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Abstract
Three statistical tests for testing the covariance matrix in one population under multivariate 
normal assumption were developed and compared with the classical generalized variance test by 
means of Monte Carlo simulation. It is shown that the tests, which are based on the eigenvalues 
of the sample and the theoretical covariances matrices, presented better performance than the 
generalized variance particularly in cases which the parameters (determinant and traces) of the 
covariances matrices under the null and alternative hypothesis were similar. Since the three 
statistical tests are of simple implementation they can be considered as alternatives to be used 
in a general context.
Keywords: Generalized variance, Covariance matrix, Eigenvalues, Monte Carlo, 
Hotelling, Hayter and Tsui.

Introduction
Hypothesis tests for the vector mean and the covariance matrix are very 

common when sampling from the multivariate normal distribution. Most of the papers 

better tests for the covariance matrix is also important. Practical examples appear in 
several areas particularly in quality control when the quality of the process is evaluated 
by measuring p characteristics simultaneously (p > 1). In this case location and 
variability parameters of the process have to be kept in certain pre-determined values 
in order to satisfy the established quality requisites (Montgomery, 2001).

Some statistical tests have been proposed in the literature to test the 
covariance matrix (see Anderson, 1958; Costa and Machado, 2008; Yeh et al., 2006, 
for examples), however, the generalized variance, which is based on the determinant 
of the sample covariance matrix, |S|, is still very popular and it has been used also 

exact distribution of |S| under the null hypothesis is related to the distribution of the 
product of p independent random variables with chi-square distributions (Anderson, 
1958; Aparisi et al.,1999). For simplicity, the normal distribution for |S| under the null 
hypothesis, is usually used as an approximation to construct the critical region of the test 
in practical situations. However, as shown by Djauhari (2009) the normal approximation 
for |S| just holds for large samples sizes. Another problem comes from the fact that 
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different matrices can present equal or similar determinants which contributes to the 
decreasing of the power of the generalized variance statistical test in detecting changes 
in the covariance matrix when they really take place. It is true that the determinant of the 
covariance matrix is equal to the product of its eigenvalues and that matrices with the 
same determinants not necessarily have similar eigenvalues structures (Timm, 2002). 
Therefore one possibility to improve the generalized variance test is to work with the 
eigenvalues of the covariance matrix instead of its determinant.

In this paper three statistical tests will be developed by using this approach. 
Two of them are adaptations of the T2 Hotelling (1947) and the Hayter and Tsui (1994) 
statistical tests for population vector means and the third is based on the number of 
condition of the covariances matrices. The proposed tests will be compared to the 
generalized variance test by using Monte Carlo simulation. The power of the tests as 
well as the Average Run Length (Montgomery, 2001) will be estimated under several 
scenarios and different sample sizes. At the end of the paper an example of application 

Generalized Variance Test
Let X1, X2,...,Xn, where Xk = (Xk1, Xk2,...,Xkp)´, k=1,2,…,n, be a random sample 

of size n from a p-variate normal distribution with mean vector p ´ and 
covariance matrix , a pxp p is the number of random 
variables. Let Spxp

1

1 ( )( )´
1

n
pxp k n k n

k
S X X X X

n
 

where nX  is the sample mean vector. Let the null and the alternative hypothesis be 
given as: H0:  = 0 and H1: 0 respectively, where 0

, 0 < < 1, the null hypothesis will be rejected for 
values of |S| < LCL or |S S| is the 
determinant of the sample covariance matrix.

2 2
0 / 2 0 / 2

1 1

b b
LCL max 0, 1 z , UCL 1 z

b b
 

where

p p p p
1 2p 2 pi 1 i 1 j 1 j 1

1 1b ( n i ) ; b ( n i ) ( n j 2 ) ( n j )
( n 1 ) ( n 1 ) 

| 0| is the determinant of the 0 and z /2 is the value from the standard normal distribution 
which area above is /2. The test statistic (2) is based on the fact that under the null 
hypothesis E(|S|) = b1 | 0| and Var(|S|) = b2 | 0|

2 (Montgomery, 2001).

When the generalized variance test is used in quality control, for each sample 
of size n of the process the determinant of the sample covariance matrix as given in (1) 
is calculated. If the determinant |S| belongs to the critical region of the test the process is 
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declared as out-of-control. Usually, the values of |S| are plotted in a graph in sequential 
order of sample observations called control chart (Montgomery, 2001).

The generalized variance is an interesting measure since it transforms a pxp 
matrix into a scalar number. However, it fails in many situations since different matrices 
can have equal determinants as next example shows.

Example

Consider the two matrices given in (3). Both matrices have determinants 

bivariate normal distribution with no correlation between the two random variables 
while in the second the correlation is equal 0.37. However, their eigenvalues structures 
are completely different since for 1 they are equal 1 and for 2 they are equal 2.404 
and 0.4159, respectively. This fact raises the idea of constructing hypothesis tests 
based on the respective eigenvalues of the covariances matrices separatedly instead 
of in the determinant form. In the next section three new tests based on this concept 
will be presented.

   
1 2

1 0 2.32 0.4
and

0 1 0.4 0.5  

Statistical Tests Based on Eigenvalues
In this section three statistical tests are presented. As described previously, 

for all tests it is assumed that X1, X2,...,Xn, where Xk = (Xk1, Xk2,..., Xkp)´, k=1,2,…,n, 
is a random sample of size n from a p-variate normal distribution with mean vector 

 = ( 1, 2,..., p)´ and covariance matrix , a pxp p is 
the number of random variables.

According to the spectral decomposition theorem (Timm, 2002) any 
covariance matrix pxpcan be expressed in terms of its eigenvalues i and the 
corresponding normalized eigenvectors ei, i=1,2,...,p, as given in (4)

p
pxp i i i

i 1
e e ´





Let ˆ
i , i = 1, 2,..., p, be the eigenvalues of the sample covariance matrix 

Spxp. When the random vector X has a p-variate normal distribution the eigenvalues

ˆ
i  are asymptotically independent and for each i, ˆ

i  has a normal distribution with 
mean equal to the corresponding parameter i and variance 22 / ( 1)i n (Timm, 2002). 
This result can be used in the construction of hypothesis tests for the covariance matrix 

pxpas shown next.

Hotelling T 2 Test Adapted for the Eigenvalues of the Covariance Matrix

Let the null and the alternative hypothesis be given as H0:  = 0 and 
H1: 0, respectively. Let 0 = (1, 2,...,p)´, 1 p, be the vector with the 

0, and 1 2
ˆ ˆ ˆ ˆ, ,..., ´p  be the vector with 
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the eigenvalues of the sample covariance matrix Spxp, 1 2
ˆ ˆ ˆ... p      . The T 2statistic 

given in (5) is proposed to test the null hypothesis.

0
12 2

0 0 21

1
2

p
i i

i i

(n )ˆ ˆ ˆT ( )' ( ) ( )  


where

 

0

2
1

2
2

2
p

2 / ( n 1) 0 ... 0

0 2 / ( n 1) 0 0

0

0 0 0 2 / ( n 1)

is the covariance matrix of the vector 1 2
ˆ ˆ ˆ ˆ, ,..., ´p  calculated considering  = 0. 

Under the null hypothesis T 2 has approximately a chi-square distribution with p degrees 
of freedom 

2( ) p , the null hypothesis will be rejected 
for observed values of T 2 larger than the critical value c, where 2[ ] , 0 1pP c . 

The test statistic given in (5) is an adaptation of the Hotelling T 2 test statistic 
for the mean vector of one population (Hotelling, 1947). Due to the fact that the 
normal distribution of ˆ

i  is only asymptotic, the chi-square distribution of (5) is also 
an approximation. The exact joint distribution of the eigenvalues ˆ

i  can be found in 
Anderson (1958) but is complex. Due to these facts, in this paper the exact distribution 
of the test statistic given in (5) will be generated by Monte Carlo simulation and the 
performance of the test will be also evaluated under this situation.

Hayter and Tsui Test Adapted for the Eigenvalues of the Covariance Matrix

In 1994, Hayter and Tsui proposed a hypothesis test for the vector mean of 
one population. Its advantage to the Hotelling T 2

out automatically the variables whose means were different than the null hypothesis 
postulated values. However, as shown in Hayter and Tsui (1994) neither of the tests 
were uniformly more powerful. In this section we will present an adaptation of Hayter 
and Tsui´s test to the situation where the objective is to test the covariance matrix. 

M test statistic 
proposed by Hayter and Tsui (1994) and adapted in this paper for the eigenvalues takes 
the form given in (6).

 jM max Y , j 1,2,..., p




where 

j j
j

j

ˆ
Y

2 / ( n 1)
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Due to the multivariate normality of the random vector X, the random 
variables Yj are independent and asymptotically normal. Therefore, under the null 
hypothesis the test statistic M is distributed as the maximum of the absolute values of p 

level , 0 < < 1, the null hypothesis is rejected for observed values of M larger 
than the constant called CR , such that P[M > CR, ] = . The CR  value is obtained by 
using a simulation of samples from a p-variate normal distribution with zero mean 
vector and covariance matrix equal the correlation matrix (Ppxp) of the random vector

1 2
ˆ ˆ ˆ ˆ, ,..., ´p  which under the null hypothesis is the identity matrix. The basic 

steps of the simulation algorithm (see Hayter and Tsui, 1994) are given as follows:

Step 1. Generate a large number N of vectors of observations from a p-variate 
normal distribution with zero mean vector and covariance matrix Ipxp.The 
generated vectors are denoted by Z1,Z2,...,ZN.

Step 2. Calculate the statistic M for each of the generated vectors 1 2, ,...,i i i
i pZ Z Z Z ´ 

from step 1, i.e., for every i=1,2,…,N, calculate the value of the statistics

 max | |, 1, 2,...,i i
jM Z j p 

Step 3. From the empirical distribution obtained from the sample (M1, M2,..., MN) 

as the critical constant C

The values of Yj larger than CR  identify the eigenvalues of the matrix 0 

covariance matrix Spxp.

Hypothesis Test based on the Number of Condition of the Covariance Matrix

Another measure related to the structure of the covariance matrix is the 
number of condition which is used to evaluate the singularity of the matrix, i.e., to check 
if the matrix is badly conditioned or not. Generally speaking, the number of condition 
of a matrix A ( ) A  = ||A||.||inv (A
inv(.) the inverse matrix. When the quadratic norm is chosen and the matrix A is equal 
its transpose (A = A´), the number of condition of A is the ratio between its largest and 
its smallest eigenvalues as given in (7)

max

min
( A )





The matrix A is considered badly conditioned if the number of condition 
is large. For some authors ( ) A  > 20 is considered large enough (Greene, 1997). An 
interesting fact is that matrices with similar determinants may have different number 
of conditions. To illustrate this let´s consider again the matrices 1 and 2 given in (3). 
They both have determinants equal 1 but the number of conditions are different since 
( 1) = 1 and ( 2) = 5.7788. Therefore, the number of condition can be used as an 
alternative to differentiate matrices with similar determinants but different components 
structures. Let H0:  = 0 and H1: 0, be the null and the alternative hypothesis. 
Let the test statistic (Spxp) be the number of condition of the sample covariance matrix 



Brazilian Journal of Operations & Production Management
Volume 9, Number 1, 2012, pp. 9-27

14

Spxp (Spxp) < c1 or (Spxp)>c2, 
where the constants c1 and c2 are obtained from the distribution of the test statistic 
(Spxp) under H0 and they are such that

0H pxp 1 pxp 2P [ ( S ) c ] P[ ( S ) c ] , 0 1.

The distribution of the test statistic (.) under the null hypothesis is generated 
by Monte Carlo simulation and the critical region of the test is found according to the 

) of the test. In this paper the constants c1 and c2 are 
such that

0H pxp 1 pxp 2P [ ( S ) c ] P[ ( S ) c ]
2

Comparing the Eigenvalues and the Generalized Variance Tests
In this section the results of a Monte Carlo study are presented. A total 

of 10.000 random samples of sizes n = 5, 10, 25, 50 and 100 were generated from 
a multivariate normal distribution under the null (H0:  = 0) and the alternative 
(H1:  = 1 0) hypothesis being H0 tested for each sample and each test using 0.05 as 

estimate of the probability of type I error of the test when data were generated under the 
null hypothesis and an estimate of the power of the test when data were generated under 
the alternative hypothesis. This procedure was repeated k=50 times under the null and 
the alternative hypothesis and at the end, average estimates of the probability of type I 
error and the power of the test were obtained by taking the average over all 50 repetitions 
for each test, respectively. For the generalized variance and the T2 eigenvalues tests 
the probability of type I error and the power were determined by using the asymptotic 
distribution of the test statistic as well as by the exact distribution obtained by Monte 
Carlo simulation through a generation of 50.000 random samples under the null 
hypothesis. Without loss of generality the study was performed considering one 
particular structure for matrix 0 for p = 2,3, assuming under H0 and H1.

hypothesis test which presents the highest power values is the best. However, in the 

ARL (Average Length Run) value since in quality control samples of size n are observed 

average number of samples of size n taken until one indicates that the process is in the 
out-of-control condition (i.e. the value of the test statistic falls into the critical region 
of the test, or in other words, it falls outside the control limits). The ARL is given by 
the inverse of the probability (q) that the value of the test statistic falls in the critical 
region of the test, i.e., exceeds the control limits. When the process is under control q 
is the value of the probability of type I error and when the process is out-of- control 
q is the power of the test. Usually, when designing a control chart a small value of q, 
under control, is chosen such as 0.0027 for example, in order to decrease the rate of 
false alarms (a false alarm occurs when the process is declared out-of-control by the 
control chart when in fact it is not).Then, the test (or control chart) that detects faster 
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the true out-of-control situation of the process is preferred taking into consideration 
economical and operational issues also.

For the study presented in this paper the value of q for the process under control 
is 0.05 which is not a value usually chosen to build a control chart. Independent of that, 
without loss of generality, the ARL out-of-control estimates of the tests were also estimated 
with the purpose of compared them on the light of the quality control point of view.

Simulated Models
The simulated models under the alternative hypothesis were chosen to make 

it possible to evaluate whether the statistical tests based on eigenvalues were able to 
detect small differences from 0  since it is already known that for larger samples and 
larger changes in 0 the generalized variance test has good performance. Tables 1 and 2 
present the simulated models for p = 2 and p = 3 with the respective determinants, 

Table 1. Simulated models – p = 2. 
Cases Covariance Matrices ( ) 1, 2 TR ER CR

null 2.32 0.40
0.40 0.50 

1 2.82 5.7802
2.4040

0.4159
-- -- --

1 2.32 0.65
0.65 0.50 

0.7375 2.82 8.6575
2.5280

0.2920
1

1.05

0.7
1.5

2 1 0
0 1 

1 2 1
1

1
1.41

0.42

2.40
0.17

3 2.32 0.90
0.90 0.80 

1.0460 3.12 7.1675
2.7380

0.3820
1.11

1.14

0.92
1.24

4 2.32 0.30
0.30 0.50 

1.0700 2.82 5.2417
2.3682

0.4518
1

0.99

1.09
0.91

5 2.32 0.50
0.50 0.75 

1.4900 3.07 4.0828
2.4660

0.6040
1.09

1.03

1.45
0.71

6 2.32 0.57
0.57 1.00 

1.9900 3.32 3.2280
2.5340

0.7850
1.18

1.05

1.89
0.56

7 2.32 0.80
0.80 2.00 

4.000 4.32 2.2135
2.975

1.344
1.53

1.24

3.23
0.38

TR , ER and CR: respectives ratios between the traces, eingenvalues and the number of conditions of the covariances 
matrices under H1 and H0; Case null denotes the covariance model under the null hypothesis; 
between the two variables.
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traces, eigenvalues and the number of conditions of the covariances matrices under H0 
and H1. The ratios between traces, eigenvalues (only for p = 2), determinants and the 
number of conditions from the covariances matrices under H0 and H1 are also presented.

For p = 2 0 but different 
0 but with changes 

in the variances; models 2 and 3 have different variances and correlations. For p = 3, 
0 except model 6. The covariances 

0 but completely different 

Table 2. Simulated models - p = 3 variables.
Cases Covariance matrices ( ) i,i = 1, 2, 3 DR TR CR

null

1 0.6 0.6
0.6 1 0.8
0.6 0.8 1 

0.22 11.69

2.34

0.46

0.20

- - -

1

1 0.3 0.2
0.3 1 0.8
0.2 0.8 1 

0.22 16.09

1.76

1.13

0.11

1.00 1.00 1.38

2

1 0.3 0.2
0.3 1 0.8
0.2 0.8 1 

0.33 10.02

1.93

0.87

0.19

1.50 1.00 0.86

3

1 0.0 0.0
0.0 1 0.8
0.0 0.8 1 

0.36 9.00

1.80

1.00

0.20

1.64 1.00 0.77

4

1 0.3 0.3
0.3 1 0.4
0.3 0.4 1 

0.73 2.78

1.67

0.73

0.60

3.32 1.00 0.24

5

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1 

0.50 4.00

2.00

0.50

0.50

2.27 1.00 0.34

6

1 0.6 0.6
0.6 4 0.8
0.6 0.8 1 

2.14 11.10

4.36

1.25

0.39

9.73 2.00 0.95

DR, TR, and CR: respectives ratios between the determinants, traces and the number of conditions of the covariance 
matrices under H1 and H0; Case null denotes the covariance model under the null hypothesis.
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covariances (correlations) structures and eigenvalues. The determinants of models 4, 
0. An interesting case is model 6 

0, different 
eigenvalues but similar number of conditions. The ratio of the determinants for the 
bivariate models, ranged from 0.7375 (case 1) to 4 (case 7). For the trivariate models 
the ratio ranged from 1 (case 1) to 9.73 (case 6).

Results and Discussion
The averages proportion of rejection of H0 for each test discussed in this paper 

are shown in Tables 3 and 4, for p = 2, under the null and the alternative hypothesis 
models. The ratios (PR) between the estimated powers of the eigenvalues tests and the 
generalized variance test are presented in Table 5. When the exact distributions were 
used to build the critical region of the tests, the estimates of the probability of type I error 
were 0.05 as expected. However, for all sample sizes the estimates of the probability 
of type I error from the generalized variance test based on the normal distribution were 

it means that the amount of false alarms of the control chart will be larger than the 
expected under the null hypothesis. The difference was about 0.03 for n = 5, 0.02 for 
n = 10,25 and 0.01 for larger samples (n = 50, 100). This reinforces the fact that the 
normal approximation for the test statistic of the generalized variance test should be 
avoided for small samples and used with some care for samples sizes which are usually 
considered large such as n = 100. For n = 5, the estimate of the probability of type I 
error was also smaller than 0.05 for T 2 test when the chi-square distribution was used 
as a reference distribution to build the critical region of the test (estimate  = 0.04). Due 
to these facts, in this study the comparison of the generalized variance with the three 
other statistical tests will be performed by considering the exact distribution only. For 
the T2 test both distributions (asymptotic and exact) will be used in the comparisons 
except for n = 5 for which only the exact will be considered.

In general, the statistical tests based on the eigenvalues performed better 
than the generalized variance test considering the exact distribution (EGV) resulting in 

0 1 matrices 
were very different (DR
powers estimates of the generalized variance test were smaller than the values obtained 
for the T2(ET2) and Hayter and Tsui (HT) tests except for n = 5 where EGV presented 
similar performance than these two tests. For n 
ET2 and HT tests (see PR values in Table 5) over the EGV test in case 5 ranged from 
18 to 46%; for case 6 from 6 (n = 100) to 40% (n = 25). For case 7 there was gain only 
for n = 10 (10 to 14%) being the EGV similar to ET2 and HT for the other samples 

1 in case 7 is 4 times larger 
0, a situation that favours the performance of the EGV test. 

The condition number test (CN) presented smaller power estimates than EGV for cases 
6 and 7 and more similar values for case 5.

The generalized variance test presented very poor performance for cases 2, 
3 and 4 since the power estimates were around 0.05 for all n. This can be explained 

0 1 although the matrices have 
complete different correlation structures. Not even for n = 100 the EGV was able to 
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detect any difference between these two matrices (power estimate  0.07). For case 2 
the power estimates of the ET2 and HT tests ranged from 0.05 (n = 5) to 1 (n = 50,100) 
being equal to 0.77 and 0.66 respectively for n = 25; the best test for case 2 however, 
was the CN (power estimates from 0.10 (n = 5) to 1 (n = 50,100) being equal 0.97 for 
n = 25. By Table 5 it can be seen that the power gains obtained by using CN instead of 
EGV for case 2 were very large (PR estimates ranged from 6.6 to 20).

For case 3, although the power estimates of ET2, HT and CN tests were 
not very large, they were larger than the power estimates of the EGV for all sample 
sizes. The ratio (PR) between the estimated powers of these three tests compared to 
EGV ranged from 1.2 to 4.67 being CN the best test for this case (estimated powers 
between 0.05 to 0.28).

the structure of the matrix 1 is very similar than the structure of 0, the estimated 
power values for all tests were low being CN the test more capable of detecting the 
difference between the two covariance matrices for n  25 (power estimates ranged 
from 0.11 to 0.14).

In all cases, except for n = 5, the T 2 test using the chi-square distribution 
presented similar power estimates than T 2 with the exact distribution. This is an 
indication that for n  the asymptotic distribution for the T 2 test statistic could be 
used instead of the exact distribution to build the critical region of the test. Under the 
practical point of view this is a good point in favour of using T 2 test regarding to its 
competitors HT and CN.

It is important to point out that for n = 5 the majority of the power estimates 
of all tests were small (around 0.05 except for cases 6 and 7). This is due partially by 
the nature of the simulated models since some parameters of the 0 and 1 matrices 

Table 4. Probability of type I error and power estimates of the tests - p  =  2, n = 50, 100.
Average rejection of the null hypothesis

n = 50 n = 100
Case GV EGV T2 ET2 HT CN GV EGV T2 ET2 HT CN

null 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.04 0.05

1 0.06 0.16 0.21 0.22 0.19 0.40 0.20 0.30 0.49 0.50 0.48 0.64

2 0.04 0.05 1.00 1.00 0.99 1.00 0.04 0.05 1.00 1.00 1.00 1.00

3 0.05 0.05 0.12 0.12 0.11 0.19 0.06 0.06 0.18 0.18 0.16 0.28

4 0.06 0.06 0.07 0.07 0.07 0.12 0.07 0.07 0.08 0.09 0.08 0.14

5 0.36 0.30 0.43 0.44 0.44 0.32 0.57 0.53 0.71 0.71 0.70 0.53

6 0.74 0.68 0.85 0.86 0.86 0.64 0.94 0.93 0.99 0.99 0.99 0.89

7 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
GV and EGV: the generalized variance tests with normal approximation and the exact distributions; T2 and 
ET2: T2 Hotelling adapted for eigenvalues tests with chi-square and the exact distributions;  CN : condition number test. 
Case null denotes the covariance model under the null hypothesis.
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were very similar, and also by the sample size which statistically speaking, is too small 
to estimate the population covariance matrix properly.

Table 6 presents the averages of the estimated proportions of rejection of H0 
for each test, for p = 3. Only the results from sample sizes n 10 were considered since 
the proper estimation of the covariance matrix when p = 3 requires n larger than 6. The 
ratios (PR) between the estimated powers of the eigenvalues tests and the generalized 
variance test are presented in Table 5. When the exact distributions were used to build 
the critical region of the tests the estimates of the type I error were 0.05 as expected. 
Similar as seen for p = 2, the probability of type I error estimates for the generalized 
variance test with the normal distribution (GV) were smaller than 0.05 even for n = 50 
(value around 0.03) being equal 0.04 only for n = 100. For these two respective sample 
sizes the GV estimates for all cases were very similar to the values of the exact test 
EGV. Due to these facts the results from GV will not be shown in the tables used as a 
support for the discussion presented in this section.

The results from Table 6 show that the statistical tests T 2 and HT based 
on eigenvalues presented larger power estimates than the generalized variance test 
(except for case 5, n = 10, where they were similar) in some of the cases and they were 
able to detect the differences from 0 to 1 even for case 1, which the determinants 
of both matrices are equal. For this particular case the EGV test failed in detecting the 
differences even for larger samples sizes (estimated power = 0.05; n = 100) whereas the 
other two tests presented power estimates around 0.30 (for n = 10) and 1 (for n  25). 
The performance of the EGV test improved in cases 4, 5 and 6, resulting in similar 
values than T 2 and HT for case 6 which was expected since the determinant of 1 is 
9.73 larger than the respective value of 0. For case 4 the EGV test also presented similar 
performance than HT for n = 10 but lower power estimates for n  25. By Table 5 it can 
be seen that for n 10 the gains in the power of the test by using the T 2 and HT were 
large for cases 1,2 and 3 ( PR ranged from for cases 1.82 to 20). For cases 4 and 5 the 
PR ratio ranged from 1.09 to 1.39 (for n 25) being around 1 for n = 10 and close to 
1 for case 6.

The number of condition test (CN) performs better than EGV for cases 1, 
4 and 5 particularly for case 1 (PR ranged from 1.2 to 7.4) although the power estimates 
were not very expressive for this case (ranged from 0.06 to 0.37). For cases 2, 3 and 
6 the CN test power estimates were lower than EGV specially for case 6 (estimated 
power around 0.05 for all sample sizes) which can be explained by the high similarity 
of the number of condition of both matrices 0 and 1.

For p = 3, the T2 test based on the chi-square distribution (T2) had similar 
performance than the T2 based on the exact distribution (EGV).

The ARL estimates out-of-control are shown in Figure 1 (for p = 2) and 
Figure 2 (for p = 3). The results indicated that the tests based on the eigenvalues could 

majority of the cases discussed in this paper these tests presented ARL values similar or 
lower than EGV, i.e., they were able to identify the true out-of-control condition faster 
than EGV even for smaller samples sizes and situations where the differences between 
the covariance matrices under the null and the alternative hypothesis were not very large.
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Under the quality control point of view the T 2 test has some advantage on 
Hayter and Tsui since for n 10 the chi-square distribution may be used to build the 
critical region of the test instead of the exact distribution, on the contrary of Hayter 
and Tsui´s which requires a simulation procedure to determine the constant CR , for 
any sample size n. Therefore, in practice the T 2 test is more feasible and for this 
reason it would be more appropriated in the quality control area even considering that 
the simulation procedure necessary to determine the constant CR  is very simple and 
computationally fast.

Example of Application

In Montgomery (2001) an example was presented which two quality 
characteristics, the tensile strength (Xcharacteristics, the tensile strength (characteristics, the tensile strength ( 1XX ) and the diameter (X) and the diameter () and the diameter ( 2XX ), were measure in k = 20 
samples of n
Montgomery had established the following vector 0 and the matrix 0 as the parameters 
of the process in the under control condition:

0 0
1.23 0.79

115.59, 1.06 '
0.79 0.83 

Figure 1. ARL out-of-control estimates – n  =  10,25,50,100 – p  =  2.
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The determinant of 0 is equal 0.3968, the eigenvalues are 1 = 1.8449 and  
2 = 0.2151, the trace is 2.06 and the number of condition is 8.5769. The correlation 
between X1XX  and X2 is equal 0.782.

To illustrate the statistical tests discussed in this paper 5 samples of size 
n = 10 were generated from a multivariate normal distribution with mean vector 0 being 

causes in the process which affected: (i) the standard deviation of the diameter of the 

the correlation between variables (sample 3); (iii) the standard deviations of both 

correlation between variables (sample 4); (iv) the standard deviations of both variables 

between variables (sample 5). The respective sample covariances matrices are given by

1 2 3

4 5

1.13 0.87 1.28 0.95 4.26 0.25
S S S

0.87 1.04 0.95 1.81 0.25 0.73
2.80 2.69 6.21 0.52

S S
2.69 3.00 0.52 5.17

     

   

Figure 2. ARL out-of-control estimates – n = 10,25,50,100 – p = 3.
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The corresponding eigenvalues ( 1 2
ˆ ˆ,  ) of the sample covariances matrices 

are: 1.9562 and 0.2138 (sample 1); 2.5313 and 0.5587 (sample 2); 4.2776 and 0.7124 
(sample 3); 5.5919 and 0.2081 (sample 4); 6.4254 and 4.9546 (sample 5).

For each sample the null hypothesis H0 0, was tested against H1 0 

exact distribution and the tests based on the eigenvalues discussed in this paper. The 
results are given in Table 7 with the corresponding rejection limits for H0. Under the 

1 2
ˆ ˆ,  ) 

are given respectively by 0.8697 and 0.1014.

All tests did not reject the null hypothesis for sample 1 and rejected for 
sample 5. This was expected since sample 1 came from a process under control and 
sample 5 came from a process with large variation in both variables affecting the 
covariance matrix strongly (the determinant of the sample covariance matrix S5 is 

0). The condition number (CN) failed in rejecting the null 
hypothesis in samples 2,3 and 4 whereas the generalized variance failed in samples 
2 and 4. On the contrary, Hayter and Tsui and T2 (with the exact and asymptotic 
distributions) statistical tests were able to detect all the changes performed in the 
parameters of the process since they rejected the null hypothesis for samples 2 to 5. 
Therefore, they were more appropriated than EGV and CN tests in this example.

Final Remarks
The results presented in this paper showed that the adaptation of T2 Hotelling 

and Hayter and Tsui statistical tests based on the eigenvalues of the covariances matrices 
were more powerful than the generalized variance test, except for larger changes in the 

0), cases in 
which the tests presented similar power estimates. It is important to point out that the  
T2 Hotelling and Hayter and Tsui statistical tests were able to detect small changes in 

0, on the contrary of the generalized variance test. The test based 
on the number of condition (CN 0 and 

1 had different eigenvalues structures but similar number of conditions.

Considering the results from the simulation study the T2 Hotelling and Hayter 
and Tsui statistical tests are better alternatives than the generalized variance test for the 

Table 7. Example – Observed values of the tests statistics - p = 2 - n = 10. 

Test
Sample 1

r12 = 0.80

Sample 2

r12 = 0.62

Sample 3

r12 = 0.14

Sample 4

r12 = 0.93

Sample 5

r12 = 0.09

EGV 0.418 1.414 3.047 1.163 31.835

T2 0.016 12.111 31.882 18.566 2212.97

ET2 0.016 12.111 31.882 18.566 2212.97

HT 0.127 3.389 4.905 4.308 46.746

CN 9.149 4.530 6.004 26.866 1.297

Rejection Regions: EGV <0.024 or > 1.802; T2>11.829; HT>3.209; CN < 1.387 or > 108.119. r12: sample correlation 
between variables; 0.0027.
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covariance matrix under multivariate normal distribution, since they presented similar 
or larger power than the respective test. In terms of quality control Hotelling T2 test 
has some advantage since for n 10 it can be implemented by using the chi-square as 
a reference distribution to build the critical region of the test while Hayter and Tsui 

the simulation required for Hayter and Tsui simpler than the simulation required for 
the number of condition test.
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