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Accident diagnosis in nuclear power plants (NPPs) is a very hard task for plant operators due to the number of 
variables they have to deal simultaneously when facing accident situations. The previous identification of possible accident 
situations is an essential issue for safe operation in NPPs. Artificial intelligence techniques and tools are suitable to identify 
complex systems accident situations because the system faults and anomalies lead to different pattern evolution in the 
correlated processes variables. Such patterns can be identified by Artificial Neuron Networks (ANNs). The system developed 
in this work aims to support operators’ attention and direction during accidents in NPPs using a Neuro-Fuzzy approach for 
event’s identification forecast. ANNs are used to perform this task. After the NN has done the event type identification, a 
fuzzy-logic system analyzes the results giving a reliability level of that. The results have shown the system is capable to help 
the operators to direct their attention and narrow their information search field in the noisy background of the operation 
during accident situations in nuclear power plants.
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Abstract

INTRODUCTION

Human work, in high risk organizations, is still based on 
tasks that prescribe the correct (and safer) way to do the work 
(La Porte and Thomas, 1995; De Terssac and Leplat , 1990; 
De Terssac, 1992; Hirshhorn, 1993). These tasks are written 
in procedures that have to be followed to avoid human 
errors. The main goal of this type of safety management 
approach is to control (reduce) the variability and autonomy 
of human agents, through accurate procedures, strong 
oversight or supervision, and a division of labor with clearly 
defined roles and responsibilities. According to this view, to 
follow procedures as a script is the basis for reliable and safe 
operation in several nuclear power plants around the world 
(Bourrier, 1999; Carvalho et al, 2005). Under such safety 
paradigm, human error - the problem to be avoided - is 
defined as any performance deviation when compared with 
the action sequence specified in the procedure (Dekker, 
2006).  In order to perform the sequence of actions exactly as 
it is written in the procedures, operators need to correct and 
unambiguous information about the plant’s situation. Based 
on this view, ambiguous response from instrumentation 
systems, for example: “There is 80% chance to have a Loss 

of Coolant Accident (LOCA)” may undermine and difficult 
Operators’ work, because it provides uncertain information. 
In this context, the operator’s support systems for accidents 
diagnosis should provide only the answer when they have 
100% certainty about the situation, otherwise for events 
about which the system has no certainty the response must 
be: “I do not know”.

However, field studies in nuclear power plants (Vicente, 
1999, 2001, Carvalho et al., 2005, 2006, 2007; Bourrier, 
1999), in other organizations dealing with high risk 
technology (Vaugahn 1997;  Gomes et al. 2009), and in 
the control and operation of complex systems (Amalberti, 
2002a; 2006b) have shown that written instructions and 
procedures almost never can be strict followed, due to 
variations in situations and processes, and also by the fact 
that workers are constantly struggling to become more 
efficient and productive when dealing with time pressure, 
lack of resources and other work constraints (Woods and 
Hollnagel, 2006). In these situations, operators constantly 
deal with uncertain or ambiguous information. 

The difficult with the diagnostic of events in nuclear 
power plants, due the need to deal with hundreds of 
variables simultaneously in case of accidents, has motivated 
the development of many diagnostic systems based on 
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artificial intelligence (AI) to support Operator’s work. Several 
researchers have used artificial neural networks (ANN), fuzzy 
logic (FL) and genetic algorithms (GA) to solve problems 
related to monitoring a nuclear power plant, especially 
regarding to the problem of events identification (Bartlet 
and Uhrig, 1992; Alvarenga, 1997; Pereira et al., 1998; Mol 
et al., 2006).

One of the first systems for accident identification in 
NPPs was developed by Bartlett and Uhrig (1992). They used 
ANNs for accident identification in seven accident scenery. 
The authors used a multilayer perceptron network in which 
the ANN identified the type of accident according to a 
binary encoding of three bits. However, unknown events 
were not considered.  Alvarenga (1997) used artificial 
neural networks, fuzzy logic and genetic algorithms for 
the diagnostic of postulated accidents of ANGRA II nuclear 
power plant, using a set of 17 variables of the plant. This 
work also did not consider unknown events. 

More recently, the system developed by Mol et al. 
(2006) explored the good performance of multi-ANNs with 
backpropagation training algorithm for event identification, 
even when they added noise in the input data. The system 
also presented a procedure for validation of the diagnosis 
in order to obtain an output “I do not know” for unknown 
events (the events outside the scope of ANNs’ training).

This work proposes the development of an operator 
support system for the accidents diagnosis in nuclear power 
plants, using artificial neural networks working together with 
fuzzy logic to indicate the possibility of events occurrence, 
with their degrees of reliability. Using the proposed system, 
an operator can direct his/her attention and anticipate 
actions to deal with the situation. The developed system 
recognizes that operators deal with situations where there 
is a great level of uncertainty and make decisions without a 
complete set of information about the state of the systems 
(Carvalho et al., 2008). The support system aims to help one 
of the main objectives of the operation team:  to update and 
validate individual and collective situation awareness that 
allows a resilient and safety operation (Vidal et al., 2009).  
The support system uses a set of ANNs to identify the events, 
and a fuzzy logic structure to provide information concerning 
to how reliable is each of the identifications made by the 
ANNs. The system aims to direct the operator(s) attention, 
indicating the type of accident that may be about to happen, 
besides providing the correct probability of that, allowing 
the operator to plan their actions in the near future, seeking 
the information and the support necessary to deal with 
the accident, before that the indications, coming from the 
conventional system alarm, occurs. 

A NEW PARADIGM FOR FAILURE MANAGEMENT IN 
COMPLEX SYSTEMS

As stated above, the current work system in nuclear 
power plants and in most high risk organizations is based 
on the assumption that there is always a correct way to do 
the job. However, in many situations, this approach limits 
the action possibilities of operators to deal with the system 
complexity due to the fact that:

1. System designers cannot provide a complete set 
of actions that are needed in the entire range of 
plant operational situations because of constraints 
imposed by the system/environmental variability.

2. Question one clarifies that the operators of nuclear 
plants may have difficulties to determine if the 
procedures that they are supposed to follow, are not 
the best choice to deal with a new situation (Carvalho 
et al., 2007).

3. In unknown or unfamiliar situations, in which 
operators do not have the support of written 
procedures and completely correct (unambiguous) 
information, such as FAIL or NOT FAIL, RIGHT or 
WRONG, there is a risk to face situations in which 
they have no support at all, and have to improvise, 
searching for ad hoc re-configurations in the plant 
systems (Carvalho et al., 2006a; 2007b).

 These factors justify the use of support systems that 
provide partial information about situations that may be 
evolving in the plant, to support the cognitive strategies 
used by humans. The difficulties in actual fault management 
systems based on information provided by alarm systems 
currently used in nuclear power plants had already been 
identified: meaningless alarms, unclear or underspecified 
alarm messages, alarm inflation, alarms indicating the state 
of the system rather than abnormalities are only a small part 
of the difficulties that NPP operators have. The temporal 
dynamics is also relevant. Because the close correlation 
between the variables of NPPs processes, the period which 
a lot of alarms are started is at the beginning of the accident, 
when operators have to identify what is happening in the 
plant. It is precisely during this period of high workload 
that technological artifacts should provide the necessary 
assistance to the operators on evaluating the situation. 
However, in most of the nuclear power plants currently 
available, is in this period that occurs most of meaningless 
alarms, coming from systems that are not important to solve 
the problem. Therefore, the alarm system and inadequate 
diagnostic system distract operators and disrupt their 
activities, making diagnosis more difficult and hindering 
the activities of information search and prioritization. These 
factors constitute the so-called alarm system problem 
(Woods, 1994a; 1995b).
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To help accident diagnosis in this complex operational 
situation the system developed in this work assumes the 
role of an agent trying to anticipate problems in order to 
direct the attention of the human observer for potentially 
more interesting events that are occurring, such as, a 
situation with a huge number of data, limited time to make 
decisions, and multiple action selection possibilities. The 
direction of attention is the essential point to an operator 
who is planning his/her future actions depending on the 
type of event occurring in the plant as early as possible, thus 
reaching a more suitable condition of awareness (Vidal et 
al. 2009).

The control of attention allows a forecast of action plans 
in a cognitive system. It occurs when attention driven signals 
provide important information for action selection, or when 
the attention driven signals show information that can 
be ignored, or may be delayed, safely, in accordance with 
the situation. In general, an attention driven signal says: 
“there is something I believe you will find interesting or 
important, so you should check it out.” The goal is to allow 
the operator to decide when the interrupt signal determines 
an authorization for a change (or not) in the attention focus. 
The concepts presented above were used to develop the 
system to help nuclear power plant in the diagnosis of 
accidents described in this work. It is composed by event 
identification modules, based on ANNs, and a fuzzy system, 
which informs how reliable is the event identification made 
by ANNs.

Event Identification using ANNs

For the event identification, we use the multi-type ANN 
jump model. The system explores the excellent performance 
of multilayer ANNs with a backpropagation training algorithm 
(Haykin, S.,1999). Another important characteristic of 
the proposed system is that it is independent of the time 
variable, increasing its robustness. Figure 1 shows the jump 
network with one input layer, two intermediate layers and 
one output layer. For jump-type multilayer ANNs, a neuron, 
in any layer of the network, is connected to all other neurons 
of the other layers which means there is no feedback. The 
signal flowed through the network is propagated “forward” 
from the left to the right going through all the layers. Figure 
2 shows a part of the jump, where two types of signals are 
identified: 

The “stimulus” or input signals, coming from the first 
network layer, spreading forward (neuron per neuron) 
through the network, emerging at the output of the network 
as  the output signal; 

The “error signal”, indicating the error that is originating 
from one neuron and propagated back (neuron by neuron) 
through the network.

The “backpropagation” method results in the synapses 
update rule (Haykin, 1999)   (Dwji(n)) given by the equations: 

Dwji(n) = h * dj(n) *  yi(n) (1)

( ( ))
( ) ( ) ( )

( )j k kj

dF a n
n n w n

da n
d d= ⋅ ⋅∑ , (2) 

Where k represents any neuron of the subsequent layers 
to the layer neuron j,  d(n)   is the local gradient,  yi is the 
output of neuron i, F(.)  is the activation function, aj(n)  is the 
activation of neuron j and wki  is the synapse between the 
neuron k and i.

Figure 1 -  Jump type ANN

Figure 2 - Types of signals in a back propagation ANN

Method for event identification 

To identify what type of event that is occurring in the plant, 
we use a modular structure consisting of several jump-type 
ANNs. Each structure form a module, called Independent 
Identification Module (IIM). Each IIM is composed of 
four Basic Neural Modules (BNM). A BNM consists of one 
ANN. Each BNM is responsible to identify a specific event 
among any others. To made the event identification, each 
BNM has processed variables as input signals and only two 
outputs, one that indicates the event by which the module 
is responsible (trained to indentify, named class A) and the 
other that indicates all other events (class B). Therefore, it 
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was necessary that the ANN of each BNM was trained with 
two pattern sets, a set representing the class A and another 
set representing the class B. The BNM output is 1 for class 

event A and 0 for class B events. Figure 3 shows the selection 
process of the BNMs. 

Figure 3- BNM with two possible outputs: class A and class B.

Figure 4 presents the Independent Identification Module 
composed by four BNMs. During the system operation, for 
a given event X, the BNM responsible for the identification 
of event X presents the output A equals 1 (indicating that 
the event X is occurring), and the output B equals zero. 

The others BNMs have output A equals 0 and the output 
B equals 1 (indicating that the event in progress is not their 
responsibility). Under these circumstances, each module 
IIM is capable of identifying up to four different events.

Figure 4 - Four basic neuron modules with A and B outputs.

The final structure used to perform the event identification 
is composed by a set of IIM modules. The number of 
modules is chosen according to the number of events we 
want to identify. Figure 5 shows the final structure for event 
identification of the system. 

Events Identification in noisy and dynamic situations 

In order to increase the network robustness to deal with 
the noisy background of the operation in real situations, we 
need to train the ANNs with a larger set of patterns. This is 
done by adding noise patterns to the ideal event/accident 

patterns. During the training phase we force that the neuron 
networks recognize these new patterns as belonging to 
their original classes (no noise situations). The outputs of 
ANNs in response to input patterns that represent the 
same event with noise should float around the non-noise 
discrete expected value. In order to measure how the noise 
influences the identification, we compare the continuous 
values presented at the output of the network (with noise) 
to the discrete values that represent each event (without 
noise). This procedure determines the event deviation (Dev), 
which is defined by the difference between the expected 
value and the output value of the ANN. 
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Figure 5 – A set of Independent Identification Modules (IIM), each IIM is formed by for BNMs.

Dev = | yev - y
∧

ev|, (3)

Where: ev indicates the event, yev is  the discrete expected 
value, and  

∧

y ev is the value obtained at the ANN output. This 
deviation will be used later on, to get the reliability’s degree 
of each module identification output.

To deal with the dynamic characteristic of the nuclear 
power plant variables, we have to use a mobile temporal 
window at the ANNs input. The mobile temporal window is 
needed because jump type ANNs does not have recurrence 
in its internal structure (where there is a direct dependence 
upon time), and is not able to work directly with dynamic 
systems. The time dependence was incorporated to the 
network external architecture by means of the time 
sequential presentation of the recent history of the state 
variables used in the event identification (movable temporal 
window), as presented in Fig. 6. To define the number of 

window elements, it is necessary to consider that the 
window must be large enough to identify the dynamic 
behavior of the system, without affecting the identification 
of fast events. 

Fuzzy System to Calculate the Event Confidence Degree 

The basic elements of a fuzzy system are: 1) fuzzification, 
which converts the input variables (crisp or exact measures) 
on fuzzy sets to represent uncertainty, 2) base of the 
rules that guides the knowledge system through the rules 
governing the relations between variables, 3) inference, the 
mechanism that decides which exit should be taken by the 
process, 4) aggregation which are techniques used to obtain 
an output fuzzy set from one set of rules and inference, 
5) defuzzification, that converts the decision taken by 
the inference engine into a crisp value (numerical value), 
transforming qualitative information into quantitative one.
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Figure 6 – Block diagram of the dynamic identification system with mobile temporal windows.

The fuzzy system adopted to provide the reliability’s 
level of event identification is presented in figure 7. It uses 
the input Dev as defined by equation (3) to calculate the 
confidence degree. Each BNM has its own fuzzy module. To 

determine the reliability’s level of a BNM identification, the 
fuzzy module compares the output of the BNM (Dev ) with 
the respective outputs of the other BNMs of the same IIM. 

Figure 7 - System to provide the confidence level of the event identification. Each BNM is specialized in one type of event.
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In order to make the comparison between the outputs 
of the BNMs, it has been defined the input linguistic 
variable Module_Event, for testing the relevance degree of 
the current event in the BNM, and the linguistic variables 
Event_1, Event_2 and Event_3 for testing the relevance 
of the same event in the other BNMs of the same IIM. As 
output variable, the linguistic variable Confidence_Degree 
was defined. To illustrate the variable definition process, 
the variables Module_Event and Confidence_Degree were 
defined as follows: 

Module_Event: this variable checks the current 
event relevance in five fuzzy sets: very_module_event 

(VME), module_event (ME), medium_module_event 
(MME), weak _module_event (WME) no_module _
event (NME). It used as input to calculate deviation of 
the event module, Dev (equation 3). Figure 8 shows 
the fuzzy sets for the linguistic variable Module_Event. 
The other event variables are defined in the same way.   
Reliability’s degree: this variable determines reliability’s 
degree of the current event in five fuzzy sets: not reliable 
(NC), little reliable (lC), medium reliable (MC), reliable (C), 
very reliable (VC). Figure 9 shows the fuzzy sets for the 
linguistic variable reliability’s degree.

 

Figure 8 – Fuzzy sets for the linguistic variable Module Event

Figure 9 - Fuzzy sets for the linguistic variable reliability’s degree
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Table 1. Some examples of rule formation

if module
event is strong

and is not event 1 and is not 
event2

and is not event 
3

then very reliable

if module
event is strong

and is event 1 and is not 
event2

and is not event 
3

then medium 
reliable

if module
event is strong

and is not event 1 and is event2 and is not event 
3

then medium 
reliable

if module
event is strong

and is not event 1 and is not 
event2

and it is event 3 then medium
reliable

if module
event is event

and is not event 1 and is not 
event2

and is not event 
3

then reliable

if module
event is 
medium

and is not event 1 and  is not 
event2

and is not event 
3

then medium
reliable

if Module event 
is weak 

and is not event 1 and is event 2 and is not  event 
3

then little
reliable

if It  is not 
module event

and is not event and is not event 
2

and is not event 
3

then no
reliable

The fuzzy logic rules for determining the identification 
reliability degree are empirical, based on logic. Table 1 

illustrates the formation of these rules.

RESULTS

The system was tested in the PWR simulator of the Human 
System Interface Laboratory of the Nuclear Engineering 
Institute (Carvalho et al., 2007). Four plant conditions has 
been trained by the NNs: the Normal plant condition, and 
the accidents (LOCA (loss of coolant  accident), SGTR (Steam 
Generator Tube Rupture), and MFW (main feedwater 
malfunction). Another accident type, the turbine trip 
(TRIPTUR), an automatic shutdown of the turbine, was not 
trained by the NNs and remain as the unknown accident. 
The parameters that most contribute to each accident 
characterization were considered in order to determine 
which input variables must be chosen to proceed with the 
analysis. They are: flow and temperature in hot leg (the 
output of the reactor vessel), cold leg temperature (input 
if the reactor vessel), level in the steam generator, wide 
range indication of the level in the steam generator, narrow 
range indication of the pressure in the steam generator, 
feed water flow rate of steam in the pressurizer, narrow 
range temperature margin of the coolant, pressure of the 
pressurizer.

The ANNs were trained for identification of the LOCA, 
MFW and STGR with the power plant operating at 100% 
power. The TRIPTUR accident was not trained. During the 
NNs training, we use Four hundred  twenty-eight patterns 
without noise, and 2140 patterns with 1,5 and 10% of 
white noise (a total of 6848 patterns). To set the size and 

parameters of the ANNs and the numbers of elements of 
the mobile window several tests were performed, because 
there is no general and well-defined criteria for the choice of 
these parameters. After these tests, the ANNs that provided 
the best results had the following configuration:

• an input layer consisting of sixty neurons with linear 
activation functions (twelve mobile windows with 
five members each);

• one intermediate layer with one hundred three 
neurons with logistic activation function;

• one output layer with 2 neurons with the logistic 
activation function.

After the training phase, during the operation phase 
take turns. At this stage were developed more five hundred 
thirty-five patterns that represent the accidents (LOCA, 
MFW, STGR) and the NORMAL condition. Moreover, other 
five hundred thirty-five patterns for the TRIPTUR accident 
were generated. For each accident the maximum value 
(Dev) was calculated and sent to the fuzzy system to give the 
reliability degree of each identification.

The system was tested with several levels of noise (1%, 
15% and 20%) to simulate the real conditions of operation in 
a NPP. Table 2 presents the results obtained for the NORMAL 
condition and for the LOCA, MFW and STGR accidents with 
15% noise.
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Table 2. Results for NORMAL condition and accidents, LOCA, MFW and STGR.

NORMAL condition with noise of 15% at time t = 73s

Largest deviation ( Dev ) Fuzzy reliability

LOCA Network 1.132 0%       LOCA accident

MFW Network 1.213 0%     MFW accident

NORMAL Network 0.094 96.5% NORMAL condition
SGTR Network 1.214 6.32%   SGTR accident

LOCA Accident with noise of 15% at time t = 15s

LOCA Network 0.162 72.5%  LOCA accident

MFW Network 0.804 3%  MFW accident

NORMAL Network 0.906 4%  NORMAL condition

SGTR Network 0.842 7.57%  SGTR accident

MFW Accident with noise of 15% at time t = 34s

LOCA Network 1.249 4%  LOCA accident

MFW Network 0.488 52.5%  MFW accident

NORMAL Network 1.052  5%  NORMAL condition

SGTR Network 1.065  6.9%    SGTR accident

SGTR accident with noise of 15% at time t = 13s

LOCA Network 1.128 0% LOCA accident

MFW Network 1.200 0% MFW accident

NORMAL Network 1.060 96,5% NORMAL condition

SGTR Network 0.429 6,32%  SGTR accident

Table 3 presents the result for the TRIPTUR accident which is not trained by the ANNs.

Table 3. TRIPTUR Accident at time 98s.

TRIPTUR Accident with noise of 10% at time t = 98s

Largest deviation ( Dev ) Fuzzy reliability

LOCA Network 1.302 0% LOCA accident

MFW Network 1.247 0% MFW accident

NORMAL Network 1.463 0% NORMAL condition

SGTR Network 1.344 0% SGTR accident
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To evaluate the time response of the system tests of 
the transition between NORMAL conditions to accident 
conditions were performed. Table 4, 5, 6 and 7 present the 

results of the transition between NORMAL condition to 
LOCA to LOCA, MFW, SGTR, and TRIPTUR, respectively.

Table 4. Transition from NORMAL to LOCA for t=1s, 2s and 3s.

Transition from normal condition to the accident LOCA with noise of 1%

      Dev at time 1s Fuzzy reliability

LOCA Network 0.998 0%  LOCA accident
MFW Network 0.991 0 %  MFW accident
NORMAL Network 0.026 100 % NORMAL condition
SGTR Network 0.991 6.32%  SGTR accident

      Dev at time 2s Fuzzy  reliability
LOCA Network 0.361 72.5%  LOCA accident
MFW Network 1.291 2.5 %  MFW accident
NORMAL Network 1.119 2 % NORMAL condition
SGTR Network 1.720 6.85%  SGTR accident

 Dev at time 3s Fuzzy  reliability

LOCA Network 0.118 94.5%  LOCA accident
MFW Network 1.344 0 %  MFW accident
NORMAL Network 1.136 0 % NORMAL condition
SGTR Network 1.645 6.32 %  SGTR accident

Table 5. Transition from NORMAL to MFW in time 2s, 4s and 6s.

Transition from normal condition to the accident MFW with 1% noise

Dev at time 2s Fuzzy reliability

LOCA Network 0.771 2%  LOCA accident

MFW Network 0.876 7 %  MFW accident

NORMAL Network 0.373 51 % NORMAL condition

SGTR Network 1.702 6.7 %  SGTR accident

Dev at time 4s Fuzzy reliability

LOCA Network 0.735 24 %  LOCA accident

MFW Network 0.658 25.5 %  MFW accident

NORMAL Network 0.895 5.5 % NORMAL condition

SGTR Network 1.816 6.32%  SGTR accident
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Dev at time 6s Fuzzy reliability

LOCA Network 0.973 0 %  LOCA accident

MFW Network 0.075 99.5 %  MFW accident

NORMAL Network 1.020 0 % NORMAL condition

SGTR Network  0.987 6.32%  SGTR accident

Table 6. Transition from NORMAL to SGTR in time 2s, 4s and 6s.

Transition from NORMAL condition to the accident SGTR with 1% noise

Dev at time 2s Fuzzy reliability

LOCA Network 0.984 0 %  LOCA accident

MFW Network 0.980 0 %  MFW accident
NORMAL Network 0.081 98 % NORMAL condition
SGTR Network 0.927 6.48%  SGTR accident

Dev at time 4s Fuzzy reliability

LOCA Network 0.927 1%  LOCA accident
MFW Network 1.034 1.5 %  MFW accident
NORMAL Network 0.696 5 % NORMAL condition
SGTR Network 0.337 65.4%  SGTR accident

Dev at time 6s Fuzzy reliability

LOCA Network 0.998 0 %  LOCA accident
MFW Network 0.965 0 %  MFW accident
NORMAL Network 0.963 0 % NORMAL condition

SGTR Network 0.045 93.4%  SGTR accident

DISCUSSION 

The system output (Table 2) shows the correct event 
identification, even in situations of high uncertainty at 
the input (simulated by the 15% noise level added in the 
input). In all analyzed situations, each of the proposed 
accident was identified correctly after 15s (more than 50% 
of certainty). Based on this information, an operator may 
quickly direct (fifteen seconds after the start of the event) 
his/her attention to the most likely event, even in a noisy 
background, reducing his/her information search field. 
According to it, the operator would have more time to test 
and validate his/her action options, resulting in a faster and 
more effective way to fight against the events.

Table 3 shows that the independent identification 
module (IIM) was able to identify the TRIPTUR accident, 
as an unknown accident (this accident was not trained), 
indicating that the system presents a suitable response level 

for an event that did not belong to the training scope of 
neural modules.

The results presented in Tables 4, 5 and 6 show that the 
accident identification module was able to successfully 
handle with the transition from the NORMAL condition 
for the accident condition. The system identifies the LOCA 
accident in 2s and the other accidents in 6s. This quickly 
accident identification allows the operators to direct their 
attention to the most probable situations. Furthermore, it 
can improve the operators’ dynamic failure management 
during accidents, having into account that in such moments 
(the beginning of accidents) dozens of alarms occur 
simultaneously competing for the operators’ attention. A 
previous and reliable indication about what is to happen in 
the plant, provided by the diagnostic system, will help the 
operators to decide which procedure will lead to better 
results in a shorter time, thus directing their course of actions 
during these important moments of the plant operation.
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Table 7 shows the transition from NORMAL condition 
to the TRIPTUR accident that was not part of the neural 
modules training scope. The system, in the first few seconds, 
tries to classify this event as one of the previous accidents 
trained by the identification module training set. After 6s, 
the system shows that this possibility is close to zero. Even in 
a situation of unknown event, the system indicates signs of 
possible abnormalities in the plant (4.5%  LOCA, 6,9% SGTR, 
different from the 0% indication expected in the normal 
condition). These weak abnormalities indications would 
be enough to alert operators that something unusual (and 
different from the accidents that the system can identify) is 
already taking place.

An important feature of the system is the fact that it is 
not dependent of a signal indicating the beginning of the 
accident, such as the REACTOR TRIP (automatic reactor 
shutdown) event as observed in most event identification 
systems. To make the process of accidents’ identification be 
independent from initiator signals improves the response 
time of the system and has been achieved due to the 
robustness of the system in relation to noise. It allows the 
system to make a distinction between a noisy condition of 
normality and a condition outside the normal operation 
range. It is due to the use of the mobile time window, which 
turns the system able to identify events considering the 
dynamic characteristics of the environment. 

CONCLUSIONS

This work proposes an operator support system which aims 
to direct the attention of the operators during the diagnosis 
of accidents in nuclear power plants using techniques and 
concepts of Artificial Intelligence, particularly Artificial 
Neural Networks and Fuzzy Logic. The objective is to help 
the operator during the assessment of accidents, indicating 
in advance and in a reliable way what type of accident may 
be occurring in the plant, and allowing the operators to 
direct their attention by narrowing the information search 
field in the noisy background of the operation during 
accident situations in nuclear power plants.  Focusing their 
attention in the most likely event, the proposed system aims 
to contribute on reducing the cognitive overload of the 
operators during accident diagnosis besides on increasing 
their availability for the execution of appropriate corrective 
actions to bring the plant to a safe operating condition.

The method uses artificial neural networks to identify 
the accident which are occurring in the plant, based on the 
correlation among selected process variables and uses fuzzy 
logic to identify the degree of reliability of the identification. 

By observing the results presented in the training phase, 
it was found that the jump type ANN, with backpropagation 
training is able to quickly diagnose the accidents that have 

been postulated for a PWR nuclear reactor, even with 
addition of noise that simulates the noisy background of real 
conditions of operation at the facility.

The developed system was evaluated in the LABIHS-
IEN simulator to test the proposed method for event 
identification. It was able to provide reliable results 
allowing a quick and accurate way to perform the 
identification of accidents, and can be easily implemented 
in a real nuclear power plant, towards the addition of more 
identification accidents modules, always following the same 
implementation method.
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