
Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

5

Abstract
In the context of Computer Aided Process Planning (CAPP), feature recognition as
well as the generation of manufacturing process plans are very diffi cult problems. The
selection of the best manufacturing process plan usually involves not only measurable
factors, but also idiosyncrasies, preferences and the know-how of both the company and
the manufacturing engineer. In this scenario, mixed-initiative techniques such as plan
recognition, where both human users and intelligent agents interact proactively, are
useful tools for improving engineer’s productivity and quality of process plans. In order
to be effective, these intelligent agents must learn autonomously this preferences and
know-how. The problem of learning plan libraries for plan recognition has gained much
importance in recent years, because of the dependence of the existing plan recognition
techniques on them, and the diffi culty of the problem. Even when there is considerable
work related to the plan recognition process itself, less work has been done on the
generation of such plan libraries. In this paper, we present some preliminary ideas for
a new approach for acquiring hierarchical plan libraries automatically, based only on a
few simple assumptions and with little given knowledge.

Keywords: Computer Aided Process Planning, Plan Recognition, Intelligent Agent, Plan
Library Learning, Machine Learning, Planning

INTRODUCTION
The complexity of recognizing manufacturing features from a part design, along with

the diffi culty of generating a suitable (and in some sense good) manufacturing process

A New Model for Automatic Generation of
Plan Libraries for Plan Recognition

Martín G. Marchetta
Logistics Studies and Applications Centre.
Facultad de Ingeniería. Universidad Nacional de Cuyo.
Centro Universitario, CC 405 (5500), Mendoza, Argentina.
Tel: 0054-261-4135000 ext 2128
e-mail: mmarchetta@fi ng.uncu.edu.ar

Raymundo Q. Forradellas
Logistics Studies and Applications Centre.
Facultad de Ingeniería. Universidad Nacional de Cuyo.
Centro Universitario, CC 405 (5500), Mendoza, Argentina.
Tel: 0054-261-4135000 ext 2128
e-mail: kike@uncu.edu.ar

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

6

plan has largely been recognized. One of the problems of feature recognition is that of
multiple interpretations of CAD designs in terms of manufacturing features. Since the
resulting process plans depends on the feature model generated, multiple feature models
(and also multiple process plans) must be considered.

Moreover, in addition to quantitative factors (such as cost and time), the selection
of the best part interpretation in terms of features and the best process plan, often
involves non-measurable factors, such as preferences, company’s culture and know-how
of the manufacturing engineers. This situation is refl ected in the fact that in practice,
engineers in the industry prefer the use of interactive tools rather than totally automated
ones (Horváth and Rudas, 1993; Horváth and Rudas, 1994; Horváth and Rudas, 1995;
Gao, 1999).

These are the main reasons why practical CAPP systems may increase their effectiveness
by supporting mixed-initiative approaches. In these approaches, autonomous intelligent
agents assist engineers proactively, but always considering the constraints that these
users impose interactively. Thus, intelligent assistance is always guided by the (sometimes
partial) decisions of the system users.

In order to allow this kind of proactive intelligence, the identifi cation of the engineer’s
intentions must be performed while he is working. Once these intentions have been
inferred, the intelligent agent may provide different kinds of aids, such as improvements
proposals on the manufacturing process design, and the performance of tasks on behalf
of the user. Plan recognition is a useful technique for identifying user’s intentions.

Most existing techniques for plan recognition are based on the use of a plan library
previously created (Kautz, 1987; Kautz, 1991; Lesh et al., 1999; Goldman et al., 1999).
This library contains the different plans the user may pursue when using the application
(within this work, the application is a CAPP system). There are different representations
for plans, but all of them basically represent a set of actions that must be performed,
along with a set of constraints on their execution.

Until some years ago, these plan libraries were hand coded by a human expert,
which is diffi cult, tedious, and it makes diffi cult to port plan recognition systems to
new domains (for example to different industries).

In recent years, the automatic and semi-automatic generation of plan libraries has
gained much importance, because of the reasons mentioned above. Some approaches,
with different results, have been developed.

A known way for acquiring plan libraries automatically is to generate all possible
goals and plans for a given domain, possibly using some bias to allow only valid goals
and plans (Lesh et al., 1999; Lesh, 1998).

On the other hand, some works present an approach based on the acquisition of plan
libraries from example cases. The generation of such libraries by this method can be
achieved in several ways. One of them is to use some abstraction method to produce a non-
hierarchical, subsuming plan for a set of action sequences that achieves a known goal,

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

7

using labeled examples and some knowledge about an abstraction hierarchy of concepts
(Bauer, 1998a; Bauer, 1998b). In (Bauer 1999a), a clustering approach is presented,
that eliminates the need of goal annotation for examples. In (Bauer 1999b), a similar
algorithm is presented, but the approach here is to group similar action sequences that
belong to a known goal, thus generating alternative decompositions for that goal.

Another approach is to generate hierarchical decompositions of goals and composed
actions, from labeled example cases (Garland et al., 2000; Garland et al., 2001).

In addition to the diffi culty of porting plan recognition systems to new domains, an
important reason for automating the generation of plan libraries is autonomy. The works
mentioned above automate some of the tasks that are needed to build plan libraries.
However, all of them require some human expert intervention in order to work. This is
an important problem since the intelligent agents supporting manufacturing process
planning should learn the company’s know-how, and improve their own performance
with experience.

As far as we know, the automatic acquisition of hierarchical plan libraries, from
unlabeled example cases (that is, unsupervised learning of plan libraries), has not been
achieved yet. In this paper, we present some ideas for acquiring such libraries, with
little hand coded knowledge and unlabeled example cases. An example from the fl exible
packaging domain, as described in (Ibañez et al., 2003) and (Ibañez et al., 2001), is
given to illustrate the algorithm.

PLAN LIBRARIES GENERATION ISSUES
There exist many representations for plan libraries, which contain different kinds

of information. The algorithm presented in this paper is focused on the specifi c aspect
of inferring plan decompositions from unlabeled action sequences.

A decomposition of an action is a set of simpler actions that have to be performed in
order to accomplish it. A composed action can have several alternative decompositions,
and each decomposition can be made up of either other composed actions or other basic
ones (see Kautz, 1987; Kautz, 1991).

In order to learn such decompositions, an automatic segmentation mechanism must
be provided. Such a mechanism must have the capability of identifying higher-level
actions, by grouping the primitive ones that are observed from the user’s interaction
with the application, detecting recurrent patterns.

One diffi cult problem that arises, is that of interleaved plans. Previous works assume
that each action sequence observed, contains only actions related to one goal (Bauer,
1998a; Bauer, 1998b), or that there may be actions for more than one goal, but the
segmentation is not inferred, but given by the trainer, by means of labeled examples
(Garland et al., 2000; Garland et al., 2001). This could be true if the observations (action
sequences), are provided by an expert, or by somebody who is explicitly training the

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

8

system. However it would be useful to use an algorithm that can operate even with
interleaved plans and unlabeled examples, in such a way that the agent can learn
autonomously while the engineer uses the system.

GENERATION OF PLAN LIBRARIES
The model used for plans representation in this work is similar to that described in

(Kautz, 1987) and (Kautz, 1991). Under this representation, a plan library is a graph
containing actions (also called events) as its nodes. In this work, we use terms “action”
and “event” as synonyms. Actions are connected by 2 kinds of edges: thick grey arrows
represent “is a” relations and thin black arrows represent “part of” relations. A special
action called End Event, has a “is a” relation with all the “top-level” actions (actions
that are not part of another one, and that are performed for their own purpose). A plan
library defi ned in this way is a structure that represents the hierarchy of actions that
are relevant to a domain.

Before introducing the segmentation algorithm, we present some assumptions. First,
we assume that each action sequence is complete, that is, it contains at least all the
actions necessary to achieve every goal present on it. For example, if the action sequence
AS1 contains actions for two interleaved plans P1 and P2, then at least it contains all the
actions needed for achieving the goals of P1 and P2.

Second, if two different plans appear always together in the observations, then
they may be considered as the same one. The third assumption is that, if two composed
actions share some basic ones, the hierarchy generated may not be exactly the real one,
but an equivalent hierarchy, as will be shown in following sections. These two facts are
assumed since the fi nal aim of this work is to produce a system whose behavior is as
much faithful as possible with respect of the user’s behavior, even when the internal
plan library is not an exact representation of the reality.

Finally, we assume that information of pre-conditions and effects of the primitive
actions that can be observed is available (information for planning).

Decompositions
The fi rst problem that must be solved is to infer segmentation of actions. Segmentation

can be defi ned as the grouping of sets of actions that must be performed, for achieving
a more general one. Thus, the segmentation is the result of the identifi cation of
decompositions of non-primitive actions. A desirable property of a segmentation
algorithm is it being incremental, so the previously made inferences are used in
subsequent steps, instead of storing the processed example cases.

Intuitively, whenever a set of new actions appears in an action sequence, this set of
actions can be considered as a decomposition for some new (and previously unknown)

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

9

non-primitive one that represents the observation. For example, consider the simple plan
library presented in fi gure 1, which represents a simple plan library within the fl exible
packaging domain (see Ibañez et al., 2003).

Initially the system has an empty library that contains only the End Event. Now
suppose that the agent perceives the following action sequence included by the user
into a process plan during a session in the system:

AS1 = {LoadInk, PrepareImage, PrintSubstrate}

Because none of the actions have been seen before, the agent creates a new composed
action, named Print’ whose parts are LoadInk, PrepareImage and PrintSubstrate (we
denote the learned composed action with an apostrophe to show that the system will
assign an arbitrary name to it).

A different situation arises when the agent observes an action sequence that contains
parts of both known and unknown non-primitive actions. In this case, these actions can

Figure 1: Simple plan library for packaging industry domain

Figure 2: Plan library under construction

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

10

be considered as the parts of a more general event that represents the entire sequence.
For example, suppose that the user includes the following actions in the process plan:

AS2 = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate}

Here, LoadInk, PrepareImage and PrintSubstrate are identifi ed as a decomposition of
Print’, so the algorithm will create a new composed action named PrintLaminate’, which
has Print’, LoadPrintedSubstrate and Laminate as its parts. In fi gures 2.a and 2.b, the
states of the plan library after the fi rst and second observation, are shown.

Now suppose that the action sequences were seen in the inverse order. After the
fi rst sequence, the agent introduces in the plan library the action PrintLaminate’, with
LoadInk, PrepareImage, PrintSubstrate, LoadPrintedSubstrate and Laminate as its parts.
When the second sequence is processed, only a part of a known action is identifi ed.
In these cases, the agent must fi gure out that, in fact, LoadInk, PrepareImage and
PrintSubstrate are part of Print’, which in turn is part of PrintLaminate’.

Thus, the action taken by the agent should be to create Print’, and modify
PrintLaminate’ as needed. Finally, the new action is added to the plan library, in
accordance with the segmentation, obtaining as before the state shown in fi gure 2.b.

Defi nition 1 (Complete decomposition).
A set of actions AS containing all of the parts of a composed action Ac,

is a complete decomposition of Ac.

Defi nition 2 (Partial decomposition).
A set of actions AS containing some parts of Ac, but not all of them,

is a partial decomposition of Ac.

The base of the method intuitively described before, is the identifi cation of unknown
actions, complete decompositions and partial decompositions. In absence of further
information, all new action sequences are considered as part of a new non-primitive
action. With the arrival of new example cases, the plan library is refi ned successively.
These refi nements are based on the complete and partial decompositions identifi ed in
the new observations.
A schematic algorithm for generating hierarchical decompositions for plan libraries,
named HIDEL (HIerarchical DEcomposition Learner), is shown in Figure 3. This algorithm
handles several cases that can arise, related to a new action sequence:

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

11

a. It has no previously seen basic actions.
b. It includes only complete decompositions of already known composed actions.
c. It presents some basic actions that have not been seen, and some actions that are
a complete decomposition of already known actions.
d. It contains a partial decomposition of known actions.

Figure 3: Schematic segmentation algorithm

In case (a), the system can segment all the actions as part of a new composed event.
In case (b), known non-primitive actions are identifi ed from the sequence. Two situations
may arise for this case. If the identifi ed non-primitive actions constitute a complete

HIDEL(AS , PLibrary)
Variables:

AS: A new action sequence
PLibrary: The current plan library

BEGIN
CompDec = IDENTIFYCOMPLETEDECOMPOSITIONS(AS)
PartDec = IDENTIFYPARTIALDECOMPOSITIONS(AS)
Unknown = IDENTIFYUNKNOWNACTIONS(AS)

NewSeq = CREATEACTIONSEQUENCE()
for each decomposition in CompDec

add composed action corresponding to decomposition to NewSeq

add actions(Unknown) to parts(NewSeq)

for each decomposition in PartDec
NewAction = CREATEACTION()
add actions(decomposition) to parts(NewAction)
add NewAction to NewSeq
replace actions(decomposition) with NewAction in PLibrary

if empty(IDENTIFYCOMPLETEDECOMPOSITIONS (NewSeq))
if elementCount(NewSeq) > 1

NewAction = CREATEACTION ()
add actions(NewSeq) to parts(NewAction)
add NewAction to Plibrary as End Event

else
NewAction = getAction(1,NewSeq)
If not(isSpecialization(End Event, NewAction))

add NewAction to PLibrary as End Event
END HIDEL

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

12

decomposition, then the plan library already contains the information implied by the
observation. For example, if the current state of the plan library is that of fi gure 2.b,
the sequence

AS = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate}

Figure 4: Plan library learned in case (b)

represents PrintLaminate’, so no change is needed for the plan library.
On the other hand, if the identified composed actions are not a complete

decomposition, they are arranged as parts of a new action. Consider fi gure 4.a. After
the sequence

AS = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate,
Cut, Pack}

is observed, all the actions included in the observation are part of known composed actions
Print’ and LaminateCutPack’). However, LaminateCutPack’ and Print’ are not a complete
decomposition, so the system creates a new composed action PrintLaminateCutPack’int,
with them as its parts. The results of the segmentation are depicted in fi gure 4.b. The
action PrintLaminateCutPack’int could either be a real plan (or subplan), or two interleaved
plans (as in the example). Interleaved plans will be described in following sections.
In case (c) the algorithm builds a new composed event, whose parts are the unknown
actions in the sequence and the composed actions identifi ed from the known primitive
ones observed. An example of this situation is the fi rst one presented intuitively, where
the following sequences were processed (see fi gure 2).

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

13

AS1 = {LoadInk, PrepareImage, PrintSubstrate}
AS2 = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate}

Finally, when the new observation contains a partial decomposition, as in case (d), it
is likely that these actions are in fact parts of a composed event, which in turn is shared
by the previously known one, and a new one that must be created. An example of this
case, is the same as the previous one, with the observations in the inverse order:

AS1 = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate}
AS2 = {LoadInk, PrepareImage, PrintSubstrate}

Figure 5.a shows the state of the plan library after AS1, and fi gure 5.b shows the
state after AS2. Here, actions LoadInk, PrepareImage and PrintSubstrate are grouped as
part of Print’, which is the new composed action created in accordance with the new
observation, and PrintLaminate’ is modifi ed as needed.

Figure 5: Plan library learned in case (d)

Interleaved plans
When an action sequence contains actions of more than one plan, some special

problems arise. Interleaved plans generate diffi culties because in absence of further
information, a plan library learning algorithm cannot distinguish between interleaved
plans, and an individual composed plan. Consider again the plan library shown in fi gure 1.
Suppose that the action sequence

AS1 = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate,
Cut, Pack}

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

14

is observed. Without additional information, it is diffi cult to infer if the whole observation
corresponds to a single plan, or if it corresponds to two interleaved plans (Print and
LaminateCutPack), so the system creates InterleavedPlans’ to represent AS1.

If the sequence

AS2 = {LoadInk, PrepareImage, PrintSubstrate}

is processed, a new action is created whose parts are LoadInk, PrepareImage and
PrintSubstrate, and InterleavedPlans’ is updated. As can be seen, the new observation
did not solve the problem.

We propose two alternatives to address this problem, depending on the bias imposed
to the plan library representation. In (Kautz, 1987), an event can be a part of another
one, or can be an End Event, but not both at the same time. If this bias is imposed to
the representation of plan libraries, when an action that is part of a more general one
appears alone in a new observation, as an end event (i.e, it appears as executed for its
own sake), it follows immediately that the previously inferred composed action was, in
fact, an interleaving of more than one plan. In the above example, when AS2 is processed
the composed action Print’ is created, and because it appears as executed for its own
sake, it follows that InterleavedPlans’ contained, at least, two interleaved plans (Print’
and the rest of InterleavedPlans’), so a reasonable modifi cation to the plan library would
be to remove actions of Print’ from InterleavedPlans’.

However, in some domains it could be useful to allow an action to be a part of another
one, and a top-level action at the same time (see Goldman et al., 1999). For these cases,
another mechanism is required in order to avoid the ambiguity of interleaved plans.
One feasible technique for this, is the use of a probabilistic rule. In (Marchetta and
Forradellas, 2006), an algorithm was presented that follows this approach.
The solution proposed in that work is to compute the probability that some action A’ is
in fact the interleaving of several plans, instead of a real composed one. Let N(A’T) be
the number of action sequences observed by the agent, in which either A’ or any of its
compounding parts appear. Then

 [1]

where N(A’int) is the number of action sequences where A’ appears as an interleaved plan,
and N(A’- int) is the number of sequences where it appears as a real plan.

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

15

Since the agent cannot directly determine whether A’ or not an interleaved plan,
the actual value of N(A’- int) is approximated as the number of sequences where any of
the parts of A’ appear as end events.

Thus, the probability of A’ being an interleaved plan is computed as follows

 [2]

where N(A’ie) is the number of sequences where the i-th part of A’ appears as an end
event.

This probability can be used in two ways:
1. Comparing it with the probability that the action is real
2. Using a threshold, beyond which the action can be considered as an interleaving

of plans

Shared steps
At fi rst sight, the fact that two composed actions share some steps should not be a
problem. However, there exist some situations in which the algorithm shown in fi gure 3
generates an incorrect plan library.

Consider again the plan library shown in fi gure 1. Suppose that the sequences

AS1 = {LoadInk, PrepareImage, PrintSubstrate}
AS2 = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate}
AS3 = {LoadInk, PrepareImage, PrintSubstrate,LoadPrintedSubstrate,Laminate,
Cut, Pack}

are processed. In fi gure 6, the plan library state after the processing of each sequence
according to the schematic segmentation algorithm is shown.

In the example, InterleavedPlans’ represents the interleaving of the events
PrintLaminate and LaminateCutPack. If the learning mechanism can handle interleaved
plans (for example, using some of the approaches mentioned in the previous section),
as new example cases are processed PrintLaminate’ will be eventually removed
from InterleavedPlans’. This last modifi cation should turn InterleavedPlans’ into a
representation of LaminateCutPack’, but instead it results in a new action whose parts

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

16

are Cut and Pack, and which is not a real or signifi cative one. Thus, the resulting plan
library defi nition is not equal (or even equivalent) to that presented in fi gure 1
This problem arises when the following conditions hold:

Figure 6: Plan library evolution for shared steps

1. Two composed actions shares some common parts
2. The composition of one of them is already known from previous observations
3. The other action appears later in an observation

Some modifi cation could be made to the segmentation algorithm in order to avoid
this situation, but we think that the most feasible solution is to defi ne some mechanism
to revise the defi nition of actions that could potentially share common steps, as new
evidence is processed.

The algorithm presented in (Marchetta and Forradellas, 2006) for handling interleaved
plans, which was briefl y shown in the previous section, may solve this problem. In
the proposed mechanism, with each new action sequence perceived by the intelligent
agent, it computes for each non-primitive action of the plan library the probability that
it is a real plan or an interleaving of two of them. When this probability reaches some
threshold, the corresponding non-primitive action is removed from the plan library.

Since the problem presented in this section may lead to the introduction of some

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

17

spurious non-primitive actions in the plan library, which will not appear systematically,
the same mechanism may be used to remove them, and also to remove other kind of
spurious actions from the plan library.

Alternative decompositions
Alternative decompositions of a non-primitive action, are the different ways in

which it can be accomplished. Recall that a composed action is one that is accomplished
when all its parts are performed. This type of actions may be accomplished in different
ways. Within the decomposition of an action, its parts have an implicit conjunction
relationship. Alternative decompositions, instead, have a disjunction relationship with
each other within a composed action.

The conjunction of the effects of primitive actions that are part of some decomposition,
can be seen as the goals that are achieved by that decomposition. If two actions sets are
alternative decompositions of a composed action, then they both achieve the goal of
the composed action. Thus, if two decompositions have the same conjunction of effects,
then they can be considered as alternative decompositions of the same action.

Since we assume that information about the pre-conditions and effects of primitive
actions is available as domain knowledge, alternative decompositions of actions as well
as the goals of composed actions inferred, can be determined.

CONCLUSIONS AND FUTURE WORK
An algorithm for learning hierarchical plan libraries for plan recognition from

unlabeled example cases was presented in this paper. Some complementary ideas for
supporting interleaved plans and alternative decompositions were also introduced.

One of the long term objectives of this work, is to produce new techniques that allow
a plan recognition system (part of an intelligent agent) to adapt automatically to new
domains, assuming that known and new domains are modeled by the same basic actions
(the actions used by the agent for planning), thus providing a high autonomy level to
the agent using these techniques. In the CAPP domain, different companies may have
the same manufacturing resources, but also have different preferences, policies and
strategic objectives, which yield different manufacturing process plans. An intelligent
agent with learning capabilities within a mixed-initiative environment may adapt itself
to these differences.

Even when the ideas presented in this paper are promising, future work must include
further development, in addition to an implementation and validation of the algorithms
with real data from the CAPP domain within different industries. Some additional
features must also be taken into account: abstractions of actions (“is a” relations), the
inferring of actions orderings, actions with parameters, the inferring of restrictions on
these parameters, and support of repeated and spurious actions.

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

18

REFERENCES
Bauer, M. (1998) “Acquisition of abstract plan descriptions for plan recognition”,

Proceedings of the fi fteenth national/tenth conference on Artifi cial intelligence/
Innovative applications of artifi cial intelligence.

Bauer, M (1998) “Towards the Automatic Acquisition of Plan Libraries”, Proceedings of
the 13th European Conference on Artifi cial Intelligence.

Bauer, M (1999) “From Interaction Data to Plan Libraries: A Clustering Approach”, Proc.
of the Sixteenth International Joint Conference on Artifi cial Intelligence.

Bauer, M (1999) “Generation of Alternative Decompositions for Plan Libraries”, IJCAI’99
Workshop on Learning about Users.

Gao, J (1999) “A Market Survey of Industrial Requirements for Product Data Management
and Manufacturing Planning Systems”, Proc. of the IEEE International Symposium
on Assembly and Task Planning. Porto, Portugal.

Garland, A.; Lesh, N.; Rich, C.; & Sidner, C.L (2000) “Learning Task Models for Collagen”,
Proceedings of the AAAI Fall Symposium.

Garland, A.; Lesh, N.; & Sidner, C (2001) “Learning Task Models for Collaborative
Discourse”, Proc. of Workshop on Adaptation in Dialogue Systems, NAACL.

Goldman, R.P.; Geib, C.W.; & Miller, C.A (1999) “New model of plan recognition”, In
Laskey K. B. and Prade H. editors, Proceedings of the 15th Conference on Uncertainty
in Artifi cial Intelligence.

Horváth, L. & Rudas I.J (1993) “A Machine Learning Based Approach to Manufacturing
Process Planning”, Proceedings of the International Symposium on Industrial
Electronics, ISIE’93.

Horváth, L. & Rudas I.J (1994) “Human Computer Interactions At Decision Making
And Knowledge Acquisition in Computer Aided Process Planning Systems”,
International Conference on Systems, Man and Cybernetics. ‘Humans, Information
and Technology’.

Horváth, L. & Rudas I.J (1995) “Modeling Human-Computer Interactions in Collaborative
Design and Planning”, International Conference on Systems, Man and Cybernetics.
‘Intelligent Systems for the 21st century’.

Ibañez, F.; Diaz, D.; Forradellas, R.Q (2001) “Scheduling for fl exible package production”,
Proceedings IEPM. Vol. 1, 385-400.

Ibañez, F.; Diaz, D.; Forradellas, R.Q (2003) “An Algorithm for Minimising Due Times
Violations in Flexible Package Production Scheduling”, Journal of Computer Science
and Technology, Vol 3 No.2.

Kautz, H (1987) “A Formal Theory of Plan Recognition”, Ph.D. Thesis, University of
Rochester.

Kautz, H (1991) “A Formal Theory of Plan Recognition and its Implementation”, In
Kaufmann, M. (Ed), Reasoning about plans, pp 69-126.

Lesh, N. & Etzioni, O (1996) “Scaling up goal recognition”, Proc. of the Fifth International

Brazilian Journal of Operations & Production Management
Volume 3, Number 2, 2006, pp. 5-19

19

Conference on Principles of Knowledge Representation and Reasoning.
Lesh, N (1998) “Scalable and Adaptive Goal Recognition”, Ph.D. Thesis, University of

Washington.
Lesh, N.; Rich, C.; & Sidner, C.L (1999) “Using Plan Recognition in Human-Computer

Collaboration”, Proceedings of the Seventh International Conference on User
Modeling, pages 23–32.

Marchetta, M. & Forradellas, Q (2006) “Supporting Interleaved Plans in Learning
Hierarchical Plan Libraries for Plan Recognition”, Inteligencia Artifi cial Revista
Iberoamericana de Inteligencia Artifi cial, Vol 10 No 32, pp 47-56.

Biography
Martín G. Marchetta is a PhD student at the Logistics Studies and Applications

Centre at the National University of Cuyo, Argentina. He received his bachelor’s
degree in Information Systems Engineering from the National Technological University
in 2002. His research interests include theoretical and applied artifi cial intelligence,
business intelligence, software engineering, logistics and industrial systems.

Raymundo Q. Forradellas is a professor of Information Systems at the Industrial
Engineering School (Engineering Faculty, at the National University of Cuyo), Director
of the Masters in Logistics and Director of the Logistics Studies and Applications Centre.
He received his PhD degree on Artifi cial Intelligence from the Polytechnic University
of Madrid, Spain. His research interests include applied artifi cial intelligence systems,
planning & scheduling, logistics and industrial systems.

