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ABSTRACT
Goal: This paper aims to implement a periodic capacitated vehicle routing problem with 
simulated annealing algorithm using a real-life industrial distribution problem and to 
recommend it to industry practitioners. The authors aimed to achieve high-performance 
solutions by coding a manually solved industrial problem and thus solving a real-life vehicle 
routing problem using Julia language and simulated annealing algorithm.
Design / Methodology / Approach: The vehicle routing problem (VRP) that is a widely 
studied combinatorial optimization and integer programming problem, aims to design 
optimal tours for a fleet of vehicles serving a given set of customers at different 
locations. The simulated annealing algorithm is used for periodic capacitated vehicle 
routing problem. Julia is a state-of-art scientific computation language. Therefore, a Julia 
programming language toolbox developed for logistic optimization is used.
Results: The results are compared to savings algorithms from Matlab in terms of solution 
quality and time. It is seen that the simulated annealing algorithm with Julia gives better 
solution quality in reasonable simulation time compared to the constructive savings algorithm.
Limitations of the investigation: The data of the company is obtained from 12 periods with 
a history of four years. About the capacitated vehicle routing problem, the homogenous 
fleet with 3000 meters/vehicle is used. Then, the simulated annealing design parameters 
are chosen rule-of-thumb. Therefore, better performance can be obtained by optimizing 
the simulated annealing parameters.
Practical implications: In this study, a furniture roving parts manufacturing company that 
have 30 customers in Denizli, an industrial city in the west part of Turkey, is investigated. 
Before the scheduling implementation with Julia, the company has no effective and 
efficient planning as they have been using spreadsheet programs for vehicle scheduling 
solutions. In this study, the solutions with Julia are used in practice for the distribution 
with higher utilization rate and minimum number of vehicles. The simulated annealing and 
savings algorithms are compared in terms of solution time and performance. The savings 
algorithm has produced better solution time, the simulated annealing approach has 
minimum total distance objective value, minimum number of required vehicles, and 
maximum vehicle utilization rate for the whole model. Thus, this paper can contribute 
to small scale business management in the sense of presenting a digitalization solution 
for the vehicle scheduling solution. Also, Julia application of simulated annealing for 
vehicle scheduling is demonstrated that can help both academicians and practitioners 
in organizations, mainly in logistics and distribution problems.
Originality / Value: The main contribution of this study is a new solution method to capacitated 
vehicle routing problems for a real-life industrial problem using the advantages of the high-level 
computing language Julia and a meta-heuristic algorithm, the simulated annealing method.

Keywords: Capacitated Vehicle Routing Problem; Simulated Annealing Algorithm; Julia 
Programming Language.
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1 INTRODUCTION

Nowadays,  once start ing the rapidly spreading 
implementations of Industry 4.0 for the companies, the 
supply chain management 4.0 procedure is also developed 
for which a bibliometric analysis reinforce the growing 
importance of the topic. According to Frazzon et al. (2019), 
the approaches of big data, cloud computing, and Internet of 
Things are the most widely used technologies for the smart 
applications and digitalization of the supply chain process. 
At this phase, the routing solutions are also important for 
transportation management system by linking enterprise 
resource planning and warehouse management system.

The vehicle routing problem (VRP) is a combinatorial 
optimization and integer programming problem and belongs 
to NP-hard computational complexity class. Formerly, It was 
described and solved by Dantzig and Ramser (1959) as a 
linear programming problem. Five years after these novel 
description, Clarke and Wright (1964) proposed the Clarke 
and Wright Savings Algorithm that depends on the idea of 
computing the savings for linking two customers at the same 
route (Pichpibul and Kawtummachai, 2013). As generated 
from Travelling Salesman Problem with set of constraints, 
VRP aims to obtain the minimization of delivery costs of 
vehicles to customers at different locations from a depot. In 
the literature, VRP variants with various constraints, goals 
and states have been presented and solved. Thus, in the 
operational research area, VRP has numerous applications.

Both exact and heuristics based solution methods have 
been proposed to solve VRPs. In VRP solutions, vehicle 
capacity and/or route distance constraints are taken into 
consideration. For instance, in Capacitated Vehicle Routing 
Problem (CVRP) the aim is to provide the delivery process 
with known demands by optimizing the cost bearing in mind 
the vehicle capacity constraints (Cordeau et al., 2004). As in 
the case of VRP, exact and heuristic based solutions have 
been also used from the time when it is first defined for 
solving CVRP. The non-exact heuristics solution methods 
improve the computation time algorithm complexity with 
respect to exact solutions and add liability to vehicle capacity 
and route distance constraints (Barhant and Laporte, 2006; 
Laporte, 2009).

The VRP variants are classified and mainly demonstrated 
in Figure 1 where it is seen that various VRP variations 
have been proposed in the literature. As seen in Figure 1, 
the main VRP variants are the CVRP (Laporte et al., 1986; 
Mazzeo and Loiseau, 2004; Braysy and Gendreau, 2005; 
Şahin and Eroğlu, 2014; Karagul et al., 2016; Gayialis et al., 
2019), multi-depot VRP (MDVRP) (Laporte et al., 1988; 
Wu et al., 2002; Silva Júnior et al., 2011; Allahyari et al., 
2015; Lalla-Ruiz and Voß, 2019), split delivery VRP 

(SDVRP) (Archetti et al., 2011; Bianchessi and Irnich, 
2019), periodic VRP (PVRP) (Cacchiani et al., 2014; 
Rahimi-Vahed et al., 2015; Archetti et al., 2017), stochastic 
VRP (SVRP) with demands (VRPSD), time (VRPST) and 
customers (VRPSC) (Laporte et al., 1992; Bertsimas et al., 
1995; Gendreau et al., 2016; Saint-Guillain et al., 2017). The 
variants of CVRP are time windows (VRPTW) (Dror, 1994; 
Gambardella et al., 1999; Alvarenga et al., 2007; Chen et al., 
2017), distance-constrained VRP (DCVRP) (Kara and Derya, 
2011; Bernal et al., 2018), VRP with pickup and delivery 
(VRPPD) (Ganesh and Narendran, 2007; Mosheiova, 1998; 
Katoh and Yano, 2006; Yanik and Bozkaya, 2014; Li et al., 
2017) and VRP with backhauls (VRPB) (Toth and Vigo, 2002; 
Gribkovskaia et al., 2008; Reil et al., 2018). Furthermore, 
there are some variants such as VRP with heterogenous 
fleet size (Taillard, 1993; Salhi et al., 2014; Coelho et al., 
2016; Penna et al., 2019), open VRP (Tarantilis et al., 2004; 
Letchford et al., 2007; Tyasnurita et al., 2017), rich VRP 
(Hartl et al., 2006; Koç et al., 2018; Sim et al., 2019), fuzzy 
VRP (Brito et al., 2009; Cao and Lai, 2010; Kuo et al., 2016), 
and swap-body VRP (Huber and Geiger, 2017; Absi et al., 
2017). Nowadays, VRP with green transportation strategy 
has been attractively studied with minimizing the carbon 
emissions on routing (Erdogan and Miller-Hooks, 2012; 
Bektas et al., 2016; Ene et al., 2016; Koç and Karaoglan, 2016; 
Montoya et al., 2016; Karagul et al., 2019; Koç et al., 2019).

In this paper, a CVRP is solved using Julia programming 
language with simulated annealing algorithm under 
reasonable time and reasonable number of vehicles. As an 
instance, a furniture roving part manufacturing company 
has examined with 30-customers for 12 periods with a 
homogenous fleet size from a depot. The rest of the paper 
is organized as follows. Section 2 introduces a mathematical 
model for the CVRP. Section 3 defines simulated annealing 
algorithms and Julia programming language solution 
approach, and Section 4 defines the proposed model 
and presents the simulations and analysis, followed by 
conclusions and further research in the last section.

Figure 1. The VRP variants
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2 CAPACITATED VEHICLE ROUTING PROBLEM

Capacitated vehicle routing problem, CVRP, can be 
structured to start using undirected graph as ( ), G V E=  
where { }, , , , ,0 1 2 3 nV v v v v v= …  and ( ){ }, : ,  E i j i j V= ∈  is a set of 
vertices. Here, 0V v=  is the depot with no demand level. 
When the cost for moving from i to j does not depend on 
the direction, undirected graph ( ), G V E=  has an edge set 

( ){ }, : ,  , E i j i j V i j= ∈ < .

In CVRP, the total cost of the route of the vehicle is 
minimized under the following constraints:

• Each city on the route is visited by only one vehicle,

• Each route starts at the depot and ends at the depot,

• The total number of cities on a route, vehicle capacity, 
time windows and total service time are limited.

The CVRP mathematical model of the problem under 
these constraints is shown below (Laporte, 1992; Laporte 
and Semet, 2002; Toth and Vigo, 2002; El Hassani et al., 
2008).
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and ijd  is the distance between customers i to j. The i-th 
customer has non-negative demand quantity iq  in CVRP. 
The fleet size { }, , ,1 2 mK k k k= …  is assumed to be homogenous 
that means all m vehicles have the same capacity, ik K∀ ∈ .

The VRP is given in (1)-(10) as a constraint optimization 
problem. (1) is used for the minimization of the route 
cost in which the del ivery vehicles are travel ing. 
The constraint in (2) is used for each vehicle to serve an 
i-j connection, (3) is used to avoid returning to the same 
node. The constraint (4) guarantee that the number of the 
vehicles arriving at every customer and entering the depot is 
equal to the number of the vehicles leaving. The constraints 
(5) and (6) guarantee that each vehicle can leave the depot 
and visit the j-th node only once. The constraint (7) shows 
the remaining capacity after the vehicle came i-th node from 
j-th node when the vehicle is assigned to the i-j connection. 
The constraint (8) guarantees that the initial capacity of 
the vehicles is Q. According to the constraint (9), the total 
demand of customers assigned to a vehicle will not exceed 
the capacity of the vehicle. The constraint (10) is an integer 
constraint for the variable ,

k
i jx .

Many methods have been developed for the solution 
of CVRP. The methods that provide the optimal solution 
are categorized as the exact solution methods. On the 
other hand, the methods that give the near-optimal results 
are classified as the heuristic solution method. From a 
literature review, it is seen that branch & cut and branch & 
bound algorithms and dynamic programming models and 
set partition algorithms are frequently used as the exact 
solution methods. Although it is also used for the final 
solution, the preferred savings as a solution provider are the 
closest neighbor, two-stage method, and the petal intuitive 
classical intuition. In addition, in the third and the last 
group, metaheuristics such as genetic algorithms, simulated 
annealing, tabu search, particle swarm optimization such 
as ant colony and artificial bee colony, local search and 
acceptance threshold are also other methods used to solve 
CVRP. Metaheuristics methods are algorithms generally 
inspired by natural events to solve complex optimization 
problems that cannot be solved in a reasonable time by 
precise mathematical solution methods. Especially in large 
and integrated structures, the metaheuristics methods are 
the most practical way to solve real-life problems. The aim of 
these methods is to investigate the solution space effectively 
and to provide solutions that are close to the optimal. Being 
easy to understand and practical, it is widely used today 
because it can be used with slight changes in the solution 
of different problem types. The metaheuristic methods 
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can be classified in terms of the inspiration used (natural 
or artificial), the initial solution used (population or single 
solution), the objective function used (dynamic, static), 
the neighborhood structure (single, multiple) and memory 
status (memory, memory-free) (Blum and Roli, 2003). In the 
last three decades, genetic algorithms (Holland, 1975), 
simulated annealing (Kirkpatrick et al., 1983), tabu search 
(Glover and McMillan, 1986), artificial immune system 
(Farmer et al., 1986), ant colony (Dorigo et al., 1991), particle 
swarm (Kennedy and Eberhart, 1995), artificial bee colony 
(Karaboga, 2005) are the frequently used metaheuristic 
methods in the solution of integrated optimization problems.

In this paper, simulated annealing algorithm is applied for 
solving the CVRP problem with a real-life industrial model 
and its results are obtained with minimizing the sum of the 
total distance.

3 SOLUTION APPROACHES

3.1 Simulated Annealing (SA) Algorithm

In general, analytical methods don’t provide the 
optimal solution for the CVRP at a reasonable time. Thus, 
heuristics and metaheuristic approaches are used for 
solving combinatorial optimization problems. The goal 
of heuristics/metaheuristics approach is to carry out the 
solution space and to provide convenient results close to 
the optimal solution well planned.

In this study, simulated annealing (SA) algorithm which 
was first applied by Kirkpatrick et al. (1983) is used that 
is efficient metaheuristic approach that can be applied to 
solve CVRP. The method, which is named after metallurgical 
science and the annealing of metals, is often used for discrete 
optimization problems. SA is based on the physical annealing 
treatment which is using widely known metropolis algorithm 
in inner-loop of the algorithm (Johnson et al., 1989). 
SA has generally used to solve combinatorial optimization 
problems the same as other heuristics/metaheuristics 
approaches. Fundamental stone of SA algorithm is the 
dynamically decreasing iterations of the p value, which is 
likely to accept the bad solution instead of sacrificing the 
good solution. When this arrangement is made, in the first 
parts of the problem solution there is a lot of leap between 
the solution regions, and when the number of iterations 
increases and the solutions we get are at a very good level, 
it approaches 0 and so our search zone becomes narrower. 
The basic principle of the annealing algorithm is precisely 
this. Annealing process based on the solidifying which is 
make liquefied by high and efficient heating treatment. 
Material change with the high temperature that mean 
internal particles and shape imbalances. Next phase of 

the process, it is systematically decreased temperature by 
system until the steady state condition. So, the possibility 
of selecting a bad solution is systematically reduced by 
temperature. Temperature is an expression due to iteration 
(usually smooth or logarithmic decreasing). Similarly, atoms 
is getting balance which is steady state condition in each 
iteration temperature. Finally, internal energy of the material 
is down minimum point because of the system heat’s catch 
the environmental temperature(Lin and Fei, 2012; Şahin and 
Eroğlu, 2014; Karagul et al., 2019).

Osman (1993) developed a hybrid simulated annealing 
algorithm with the tabu search algorithm for solving a 
CVRP. Zeng et al. (2005) proposed an assignment-based 
local search algorithm used with simulated annealing. 
Tavakkoli-Moghaddam et al. (2007) developed a mixed 
integer linear model for CVRP, where a customer’s demands 
can be divided into more than one vehicle and searched 
a possible solution with simulated annealing. Leung et al. 
(2010) developed a simulated annealing-based solution that 
considers the two-dimensional loading constraints for the 
integrated solution of vehicle loading and routing problems, 
which are two major problems of distribution logistics. 
Then, Tavakkoli-Moghaddam et al. (2011) presented a novel 
mathematical model for a competitive VRPTW to optimize 
routes considering the minimum travel cost and maximum 
sale using simulated annealing (SA) algorithm. By using both 
a small and a large dataset, it is shown that the SA algorithm 
can find useful solutions for VRPTW in a shorter time than 
exact methods. A multi-objective variant of the VRPTW 
based on the simulated annealing, namely, the multiple 
temperature Pareto simulated annealing is proposed and 
solved on the Solomon’s datasets by Baños et al. (2013) 
where the travelled cost and the imbalance in the distances 
travelled by the vehicles, and in the loads delivered by them 
is optimized at the same time. Then, Vincent et al. (2017) 
developed simulated annealing with a restart strategy to 
solve this problem for hybrid VRP that is an extension of 
the green VRP. Their strategy determines the acceptance 
probability of a worse solution using the Boltzmann function 
at first and, employs the Cauchy function to determine the 
acceptance probability of a worse solution at the second 
part of strategy. Their study shows that the proposed SA 
approach has effectively solved the problem on vehicle type 
and the number of electric charging stations that have an 
impact on the total travel cost. The initial temperature, the 
number of solutions to be produced at each temperature, 
the temperature reduction function, and the stop criterion 
are the four parameters of SA.

The convergence of SA is given as in Figure 2. Graph 
showed to readers, convergence realized step by step in 
each iteration. The SA based solution algorithm for CVRP is 
given as follows in Chart 1 which includes pseudo-code and 
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the values of the simulation parameters in detail. The SA 
method has four parameters: the initial temperature, the 
number of solutions to be produced at each temperature, 
the temperature decrease function, and the halt condition. 
The convergence of SA is given as in Figure 2 and the 
SA based solution algorithm for CVRP is given as follows 
in Chart 1 which includes Matlab/Octave code like as 
pseudo-code and trivial optimized running parameters. 
The code is easy readable and understable.

3.2 Julia Programming Language

Modern programming languages have worked with stylish 
design objects and their compiler tools have reasonable 
performance. However, to provide a working environment 
for different disciplines or even for interdisciplinary studies, 
high performance scientific computing tools should 
present a user-friendly coding environment and syntax for 
research studies. In computer programming, a scientific 
language is a programming language especially optimized 
for mathematical contents such as linear algebra, dynamic 
equations, differential equation solvers and matrices used 
in scientific computing. Julia programming language which 
is carried out at the Julia Lab at Massachusetts Institute of 
Technology (MIT) in 2012, is a high-level, high-performance 
dynamic language suitable for scientific computation. In Julia, 
there are unexpectedly many ways in which utterings in the 
language can be used that makes Julia a flexible language. 
Being a free and MIT licensed open source software is 
another advantage of Julia. The custom software developed 
with Julia programming language can be compiled to a native 
code for multiple platforms via a low level virtual machine. In 
Julia, the user-defined types are as fast and compact as built-
ins. In Julia, the vectorization of the code is not necessary for 
computation performance; the de-vectorization of the code 
is also fast. Julia is designed for parallelism and distributed 

computation. Also, the C functions can be directly called 
without wrappers or special APIs.

For a performance comparison of Julia and typical dynamic 
programming languages, the results of micro-benchmarks 
such as sorting, string parsing, numerical loops, random 
number generation, recursion, array operations, and 

Figure 2. Convergence of simulated annealing algorithm (Abdulal et al., 2012)

Chart 1. Pseudo-code for Simulated Annealing for the CVRP
mVRP=readVRP(TestProblemFile)
% mVRP.xy: VRP custormers and depot coordinates
% mVRP.q: Customers demand quantities
% mVRP.Q: Vehicle capacity
% mVRP.I: number of customers
% mVRP.J: number of vehicle
m = I+J-1: candidate solution size
Generate an initial solution X0 = shuffle[1:m]
Select an initial temperature and reduction formula α
Repeat
Repeat
Create a neighbour X by randomly changing the caster 
adjustment of a random heat
Evaluate neighbour using the heuristic discussed previously
If neighbour is an improvement over X0

X0=X
Else
Generate random number from Uniform Distribution (0,1)
If R<exp((f(X)-f(X0))/t) then
X0=X
Until iteration count=nrep
Set t=α(t)
Until stop condition=true
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function calls from the Julia homepage are given in Figure 3 
(Julialang.org). These micro-benchmarks have related to 
do test compiler performance on a range of common code 
patterns, (Julialang.org).

Julia’s ease of use and computation time advantages 
over other languages mentioned above makes it a good 
candidate for general purpose programming in addition 
to scientific analysis. From security point of view, there 
have been a few interesting issues that have come up that 
indicate that a deeper exploration of Julia in a potentially 
untrusted, multi-user, multi-threading environments such as 
Web applications, mobile platforms is warranted. However, 
the logistics optimization toolbox used for solving the 
CVRP is limited only for scientific usage for a standalone, 
single-user environment. Therefore, these security issues 
are not considered in this study.

Consequently, it is seen that Julia has more effective 
working fields such as machine learning, data analysis, 
parallel computing and scientific domains besides using 
general purposes and visualization. So, in this paper, 
Julia language is preferred to start with developing a new 
logistics toolbox and this paper is also presented for this 
purpose.

4 NUMERICAL RESULTS

As a case study, a furniture roving part manufacturing 
company which is located in Denizli, Turkey is considered. 

The company has the demand values from 30-customers 
for 12 periods as seen in Table 1. A sample photo of the 
furniture roving part is given as in Figure 4, the total demand 
fluctuations are given for each period as in Figure 5 where 
the seasonal and economic fluctuations can be observed. 
As seen in Figure 5, there are 12 periods corresponding 
to four years. Thus, each period belongs to four months. 
Appendix A shows the distances from depot to customers 
and also between each other.

The programs run on Julia v1.0 environment with 
i7 4800QM CPU and 16 GB RAM capacity. The SA parameters 
are used in the tests as: the maximum number of iterations 
is 10K, the maximum number of inner-iteration is 100, 
the initial temperature level is 250 and, the temperature 
damping rate is 0.99. The computational results are 
summarized in Table 2.

According to the results, the minimum total demand 
values are 9013.9 and 9906 as the simulated annealing 
algorithm with Julia and savings algorithm with Matlab, 
respectively. So, the objective function value is better with 
the proposed method as 9%. On the other hand, as the 
savings algorithm is a constructive algorithm much better 
solution times were reached, however, for the numbers of 
required vehicles, the proposed approach requires at most 
5 vehicles instead of 6 vehicles from savings algorithm. 
In addition, the more effective vehicle utilization rate is up 
to 88.72% from 86.27%. Obtaining a better vehicle utilization 
rate may provide two important advantages. The first is 
the positive effect on the economy by reducing the fuel 

Figure 3. The benchmark results of Julia and typical dynamic languages (Julia Language, 2018).
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consumption, and the second is the positive effect on the 

environment by reducing carbon dioxide emissions.

5 CONCLUSIONS AND FURTHER RESEARCH

Table 1. Customer demands
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

C1 225 275 585 300 575 625 325 650 425 550 405 475
C2 225 425 135 300 300 225 225 235 275 200 275 350
C3 450 225 230 235 600 775 375 270 500 200 575 150
C4 450 390 425 525 280 415 295 510 205 325 213 585
C5 530 200 225 265 285 350 200 225 425 650 250 370
C6 200 480 150 175 275 480 370 225 350 250 170 225
C7 375 725 375 510 575 200 570 550 380 275 450 375
C8 200 225 225 475 200 125 475 200 200 725 200 300
C9 525 625 665 650 270 615 200 475 395 300 630 380

C10 350 180 525 345 360 200 550 250 225 250 535 375
C11 375 385 550 525 450 530 400 440 200 450 605 200
C12 625 175 330 250 410 200 175 200 175 175 175 175
C13 555 250 775 450 525 525 420 525 370 695 675 430
C14 375 500 400 450 615 250 300 350 550 375 550 475
C15 375 625 750 385 450 475 400 675 725 900 300 275
C16 270 675 875 550 500 775 375 650 625 575 610 175
C17 700 375 530 475 275 325 650 725 515 550 300 175
C18 525 350 475 325 275 365 685 550 415 650 275 400
C19 175 500 250 500 375 225 735 350 375 575 475 625
C20 500 575 250 425 590 275 450 400 675 800 700 620
C21 475 300 570 525 525 300 680 175 650 725 450 325
C22 175 350 650 825 475 475 625 710 225 375 425 620
C23 450 315 400 300 250 775 775 435 400 415 510 545
C24 775 475 625 700 600 630 550 540 550 685 525 500
C25 750 575 800 625 750 500 475 675 750 300 525 525
C26 850 745 800 675 275 500 460 525 400 655 750 700
C27 485 215 375 675 650 505 585 590 600 625 750 425
C28 430 250 225 625 850 450 425 530 200 300 425 575
C29 250 625 675 600 580 420 375 255 350 200 250 650
C30 300 650 420 775 275 250 375 750 400 300 400 125
Total 12945 12660 14265 14440 13415 12760 13500 13640 12530 14050 13378 12125

Figure 4. Furniture roving parts Figure 5. Total demand fluctuations for each period
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In this paper, a new scientific computing language Julia 
is used for solving CVRP with SA as the proposed approach. 
The CVRP model has investigated in a furniture roving part 
manufacturing company which is located in Denizli, Turkey. 
The company has the demand values from 30-customers for 
12 periods. Before the scheduling implementation with Julia, 
they have no effective and efficient planning as they have 
been using spreadsheet programs for vehicle scheduling 
solutions. In this study, the solutions with Julia are used 
in practice for the distribution with higher utilization rate 
and minimum number of vehicles. The homogenous fleet 
is used with 3000 meters of vehicle capacity. The obtained 
results are compared to savings algorithms from Matlab 
programming language in terms of solution quality and time 
at the same problem.

In this study, the latest technology in the literature is 
taken into consideration in the developed SA code. However, 
it is not the SA algorithm that demonstrates the state-of-art. 
The authors aimed to achieve high-performance solutions 
by coding an industrial problem manually solved with a 
state-of-art language. Another state-of-art situation here is 
to solve a real vehicle routing problem using Julia language 
and SA and recommend it to the industry practitioners.

According to the results, the minimum total demand 
value for the simulated annealing algorithm is better than 
savings algorithm. The savings algorithm is a constructive 
algorithm. Therefore, solution times were better than 
simulated annealing algorithm. On the other hand, the 
simulated annealing algorithm requires at most 5 vehicles 
instead of 6 vehicles of the savings algorithm. This has a 
positive effect on the fuel economy and the environment.

Even if the savings algorithm has produced better solution 
time, the proposed approach has minimum total distance 
objective value, minimum number of required vehicles, 
and maximum vehicle utilization rate for the whole model. 
Furthermore, this study can be evaluated by starting 
to develop a new logistics toolbox with Julia scientific 
computing. So, as a further study, the VRP variants and the 
new and/or known solution methodologies with Julia can 
be considered.

The industrial problem handled in this study can be 
evaluated from different perspectives as a further study. For 
instance, the problem can be evaluated within the framework 
of inventory routing problems. Also, heterogeneous fleet 
vehicle routing problems, another complex vehicle routing 
problem, can be solved by these algorithms. Time window 
constraint can be added to deal with a more complex 
problem. The same industrial problem may arise as a more 
difficult vehicle routing problem in case of the state-of-art 
problems such as stochastic demand, green vehicle routing 
or electrical vehicle routing. When the industrial problem 
handled in this study and the theoretical approaches listed 
below are evaluated together, different expansions can be 
revealed for future studies.
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