
Brazilian Journal of Operations & Production Management, Vol. 17, No. 1, e2020607, 2020

ABEPRO
DOI: 10.14488/BJOPM.2020.010

Brazilian Journal of Operations & Production Management

ISSN 2237-8960

FORECAST OF MULTIVARIATE TIME SERIES SAMPLED FROM INDUSTRIAL
MACHINERY SENSORS

Heron Felipe Rosas dos Santos
heron.frs@gmail.com
Fluminense Federal University, Rio
das Ostras, RJ, Brazil.

Leila Weitzel Coelho da Silva
leila_weitzel@id.uff.br
Fluminense Federal University, Rio
das Ostras, RJ, Brazil.

Ana Paula Barbosa Sobral
ana_sobral@vm.uff.br
Fluminense Federal University, Rio
das Ostras, RJ, Brazil.

ABSTRACT
Goal: To evaluate the performance of a set of forecasting methods in the prediction of
future values on a dataset of time series collected from sensors installed in an industrial
gas turbine.
Design / Methodology / Approach: Forecasting methods tested include the use of
multivariate and univariate neural networks (FNN and LSTM), exponential smoothing
and ARIMA models.
Results: Results show that the use of ARIMA models to forecast on the dataset is the
best default method to apply, and is the only forecasting method that consistently beats
a simple naïve no-change model.
Limitation of the investigation: There was a focus on evaluating neural networks. This
limited resources available to evaluate other forecasting methods. There is no guarantee
that it would not be possible to find neural networks capable of yielding better forecasts
than the ones achieved by the best performing methods in this research.
Practical implications: The broadest possible implications of the results are that the best
default method to forecast industrial machinery time series is the use of ARIMA models.
Additionally, neural networks are not capable of beating methods well stablished within
the forecasting community, namely ARIMA models.
Originality / Value: To the best of the authors’ knowledge, there is a scarce amount of
published evaluations of multiple forecasting methods on data from real machines. This
knowledge is useful for the understanding of the best forecasting methods available for
the estimation of machine’s RUL using sensor time series.

Keywords: Prognostics; Time Series; Forecasting; Neural Networks; ARIMA.

https://bjopm.emnuvens.com.br/bjopm/index
https://orcid.org/0000-0002-3090-3556

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020

DOI: 10.14488/BJOPM.2020.010

2/12

INTRODUCTION

Condition Based Maintenance (CBM) is a maintenance
policy that aims to take maintenance action before a
failure happens. CBM times the maintenance action by
assessing product condition, and predicting failure based
on data gathered from the product. While the technologies
and technical methods for CBM are still in their infancy,
advancements in information technology have accelerated
growth in CBM technology by enabling network bandwidth,
data collection and retrieval, data analysis, and decision
support capabilities for large datasets of time series. Process
data, collected in the form of time series, is often compressed
and archived for record keeping and only retrieved for
emergency analysis after a fault has occurred. This data
could be of tremendous advantage when combined with
effective analytics and superior computing power capable
of generating knowledge from the data (Qin, 2014; Shin
and Jun, 2015). The topic of leveraging embedded sensors,
industrial networks and data mining techniques in order to
attend high complexity industrial demands also relates to
the current research trend on the Internet of Things (IoT).
The four basic aspects of IoTs are reliable and accurate data
collection; capacity to collect a huge quantity of data; rapid
data transmission and automated processes (Lopes Miranda
Junior et al., 2017; Alarcón et al., 2016).

Diagnostics and prognostics are two parts of CBM.
Diagnostics is a reactive process. It takes place after a fault
has already occurred and aims to determine the root cause
of the failure. It cannot prevent machine downtime and
the corresponding expenses. Prognostics is a proactive
process. It assesses and predicts future machine health,
which includes detecting incipient failures and predicting
remaining useful life (Lee et al., 2014).

There are three classes to the current approaches to
prognostics: model based, data driven and hybrid. Model
based approaches presume that it is possible to build a
mathematical model from the understanding of the physical
mechanisms involved in the failure modes of the machine
that bases the model. While these approaches have the
advantage of providing the ability to incorporate physical
understanding of the system, if the understanding of the
system degradation is poor, it may be difficult to model the
system behavior. Data driven approaches use data gathered
from sensors or by the machine operators to track features
that indicate the degradation of the system. Data driven
approaches can leverage computer intelligence techniques
like neural networks and decision trees, or statistical
techniques like auto-regressive models (Dragomir et al.,
2009).

Historically, for time series in diverse domains, empirical
evaluations showed that statistically sophisticated or
complex methods do not necessarily produce more
accurate forecasts than simpler ones. However, recent
evaluations have concluded that complex methods based
on computational intelligence and neural networks have
caught up, and that simple methods can no longer claim to
outperform computer intelligence methods without a proper
empirical evaluation (Crone et al., 2011).

Several studies into prognostics have treated it from
a time series forecasting perspective. Pham et al. (2012)
used an Auto Regressive Moving Average (ARMA) model on
baseline data. Pham et al. used deviations from the ARMA
model on future values as a degradation index. After the
degradation index reaches a threshold, Pham et al. used
Cox’s PHM (Proportional Hazards Model) to create a survival
probability curve as a function of time followed by Support
Vector Regression (SVR) to predict remaining useful life.
Heng et al. (2009) used an artificial neural network with
the most recent values of a condition index (bandpass
vibration) as inputs to predict probability of failure in fixed
time intervals ahead of the last condition index measure.
Heng et al. (2009) benchmarked the proposed model against
an Elman Recurrent Neural Network (RNN). Datong et al.
(2011) developed a SVR based strategy for on-line prediction
of industrial sensor data. The authors tested the strategy on
a benchmark dataset. Datong et al. compare their proposed
strategy against a different SVR based strategy. Niu and
Yang (2010) used a neural network to fuse a set of features
into a single value used for condition monitoring. After the
condition index reaches a threshold value two non-linear
techniques, Dempster-Shafer regression and least-squares
support vector machines, predict the future behavior of
the monitored index. A weighted average combines the
predictions from both methods. Cho et al. (2016) developed
a hybrid approach to predict the next failure time of a
centrifugal compressor using vibration data. Bellow a
threshold value, Cho et al. applied a Markov model to predict
next failure time. Above the threshold value, Cho et al. apply
a mix of moving average filter and simple linear regression.

Neural networks have showed good performance when
applied to time series forecasting in domains other than
CBM. Khashei and Bijari (2010) introduced an approach
based on using an Auto Regressive Integrated Moving
Average (ARIMA) model to extract features from a time
series. The features serve as training input to a single
hidden layer feedforward network. Khashei and Bijari (2010)
test the proposed network on three different time series.
Ma et al. (2015) used a long short-term memory (LSTM)
neural network to predict traffic speed. The application of
time series forecasting methods based on neural networks,
combined with huge available amounts of historical data,

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020
DOI: 10.14488/BJOPM.2020.010

3/12

may lead to better prognostics of industrial machines.
Ultimately, better prognostics lead to reduced maintenance
costs and increased production availability.

The main goal of this study is to evaluate the performance
of a set of methods in the prediction of future values of
monitored parameters in industrial machines. The study
is an empirical evaluation, done by generating forecasts
using a dataset collected from an industrial gas turbine.
It evaluates neural network architectures that take as input
the entire multivariate time series and output forecasts
for all monitored parameters at once. Forecasts for each
individual parameter generated by neural networks, ARIMA
models, exponential smoothing and naïve models, serve as
benchmarks against the multivariate architecture.

The contribution of this paper is in the generation of
knowledge directed specifically to the improvement of
prognostics, when treated as a time series forecasting
problem. To the best of the authors’ knowledge, there
is a scarce amount of published evaluations of multiple
forecasting methods on data from real machines. This
knowledge is useful for the understanding of the best
forecasting methods available for those who want to
estimate remaining useful life of machines.

The structure of the remainder of this study is as follows.
Section 2 describes the dataset used in the study and the
preprocessing applied to the dataset prior to any model
building. Section 2 also describes the methods used to
generate forecasts for the time series and the metric for the
evaluation of the forecasts. Section 3 presents the results
obtained by applying the proposed methods to the dataset.
Section 4 provides a conclusion for the study.

THEORETICAL BACKGROUND AND METHODS

Data

This study uses data collected from an oil platform’s data
historian system. The system stores data from multiple
sensors installed through the offshore facility. The focus of
the current research is on data collected from the sensors
in one of the platform’s gas turbines. The turbine operates
in power generation role.

The dataset includes values collected from 32 sensors.
The dataset contains data from four pressure sensors:
P1 is gas fuel pressure, P2 is pressure at the lubrication oil
header, P3 is the differential pressure at the inlet air filter
and P4 is the pressure at the turbine axial compressor
discharge. Two sensors measure rotation: R1 is the Gas
Producer (GP) rotor rotation speed and R2 is the Power
Turbine (PT) rotor rotation speed. The dataset also contains
data from 14 temperature sensors: T1 is temperature at
the lubrication oil header, T2 is temperature at the cold
junction of the thermocouples installed in the turbine
and T3 is the temperature inside the turbine hood.
T4 and T8 are oil temperature at inlet of GP and PT rotors
bearings respectively, T5, T6 and T9 are the temperatures
at the turbine oil sumps, T7 is flow temperature at axial
compressor discharge and T10 is the average of the readings
of 4 thermocouples installed after the first GP turbine wheel
(T11 thru T14). Twelve vibration sensors complete the
dataset: V1 thru V10 are radial vibration sensors installed
at the turbine’s five bearings, V11 is power turbine axial
vibration and V12 is auxiliary gearbox casing vibration.
Figure 1 shows a schematic of the turbine instrumentation
used in this research.

Figure 1 - Position of embedded sensors on the turbine under consideration.
Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020

DOI: 10.14488/BJOPM.2020.010

4/12

The historian system does not log values for each sensor
at a fixed sampling rate. Different reasons may trigger a data
logging event for each sensor. In order to allow the research
to proceed with the use of standard techniques for evenly
spaced time series, preprocessing of the dataset aggregates
the time series into evenly spaced data. Daily bins divide the
dataset. For each time series, the aggregated values equal
the mean of the values inside the daily bins. In the event
there are no values that fall into a daily bin for one of the
series, a linearly interpolated value substitutes the missing
value. In order to guarantee secrecy of the real operating
parameters, normalization of the dataset using a standard
scaler follows. The resulting series have mean zero, standard
deviation one and are dimensionless. The resulting dataset
contains 1461 daily values for the 32 sensors.

The study splits the dataset in two. The first 90% of the
data serves as training data and the last 10% is the test set,
used to evaluate the accuracy of the models in proper out
of training sample data. The model training phase uses both
the original dataset and a second dataset with extreme
outliers removed. We define extreme outliers as any value
that falls outside of a range defined by a distance of three
interquartile ranges from each edge of a boxplot made with

all the samples of a time series (Montgomery and Runger,
2010). The use of the dataset without extreme outliers is
exclusively for model training. The evaluation of the models
trained on the dataset without extreme outliers happens on
the regular test set. Figure 2 shows the preprocessed dataset
without extreme outliers.

Forecasting Methods

The following subsections describe the forecasting
methods applied to the dataset. All methods use the first
90% of data for model training, the definition of model
parameters. For all models, the training phase defines the
model parameters using one-step ahead forecasts. In the
evaluation phase, that uses the remaining 10% of data, there
are no changes to the model parameters.

Neural Networks

Neural network is a term that encompass a large class
of models and learning methods. Neural networks are
nonlinear statistical models that model the outputs as

Figure 2 - Dataset without extreme outliers.
Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020
DOI: 10.14488/BJOPM.2020.010

5/12

nonlinear functions of linear combinations of the inputs.
One builds a neural network by connecting simple computing
cells called neurons or processing units. This study uses
neural networks implemented in python using the Keras
library (Chollet, 2015).

There are three basic elements to a neuron’s model.
First, a set of connecting links to other neurons, each
characterized by a weight of its own. Second, an adder,
often called a propagation function, used to sum all the
input signals to the neuron. Third is the activation function.
The activation function limits the output of the neuron and is
responsible for the nonlinearities in the network. Equation 1
and Equation 2 give the output xK of a neuron k that uses
weighted sum as its adder. Haykin (2009) give further details
on the mathematics of neural networks.

m

k kj j k
j 1

v w x b
=

= +∑ (1)

Where:

kjw : weight of the connection between neuron j and neuron k;

jx : output of neuron j;

kb : the bias of neuron k.

()k kx vϕ= (2)

Where:

kv : activation potential of neuron k;

ϕ : the activation function.

One type of neural network used is this study is
Feedforward Neural Networks (FNN). There are no loops
in an FNN. A layer only uses as input the output from the
previous layer. The study tries two approaches to forecasting
with FNNs. The first approach is to create a FNN that
uses all series as input and outputs the forecasts for the
next time step for all of the time series in the dataset at
once. We expect that this approach, from now on called
multivariate FNN, will be able to capture the interactions
between the different time series, resulting in better
forecasts. Figure 3 shows an example multivariate FNN.
The second approach, called univariate FNN, is to create
independent FNNs for each series. The independent FNN
only uses as input lagged values from the time series it
forecasts. Figure 4 shows an example univariate FNN.

It is necessary to define the architecture of the FNNs
before proceeding with the final training. All FNNs used in
this study use the same procedure for architecture selection.
The procedure starts with a split of the training set: 2/3 for
training and 1/3 for validation. Several architectures with
one or two hidden layers, different number of units in the
hidden layers and different number of lagged values as input
are considered. The procedure continues with training of

Figure 3 - Multivariate FNN using two lagged values of variables X and Y as input.
Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020

DOI: 10.14488/BJOPM.2020.010

6/12

the networks on the reduced training set for a maximum of
1000 epochs, with early stopping if the validation loss (Mean
Squared Error (MSE), as in Equation 3) does not improve
after 10 consecutive epochs. The final FNNs, trained on the
entire training set, use the architectures that presented
the smallest average validation loss after 10 training runs.
All FNNs use hyperbolic tangent as the activation function
of the units in the hidden layer.

()ˆ

2k
t tt 1 y y

MSE
k

= −
= ∑ (3)

Where:

ˆty : Forecasted value y at time t;

ty : Actual value for y at time t;

k : Number of forecasted points.

Long Short Term Memory Units

A Recurrent Neural Network (RNN) is a neural network
that allows feedback loops. The state of a RNN, the
activations in the hidden units, depends on the past values
of the state. The presence of feedback loops makes RNNs
specialized in processing sequential data, like time series.
RNNs are susceptible to the problem of gradient instability.

The longer the network runs, the more unstable are the
gradients on inputs further back in time.

Long Short Term Memory (LSTM) units, are a special
type of processing unit used to build the hidden layers
in a LSTM network. LSTM units address the problem of
gradient instability by creating paths through time that have
derivatives that will not vanish or explode (Goodfellow et al.,
2016). The LSTM units have an adaptive forget gate designed
to reset the unit state when its contents are no longer
relevant. The forget gate controls the weight of the state
self-loop, and in that way, how much of the information
in the state is preserved or discarded between time steps.
Gers et al. (1999) give further detail on LSTM units.

The study tries two approaches to forecasting with LSTM
networks. All LSTM networks tried use only one lagged value
as input, since the LSTM units should have the capability
to accumulate all relevant past information in their states.
The first approach is to create a LSTM that uses all series as
input and outputs the forecasts for the next time step for all
of the time series in the dataset at once. We expect that this
approach, from now on called multivariate LSTM, will be able
to capture the interactions between the different time series,
resulting in better forecasts. The second approach, called
univariate LSTM, is to create independent LSTM networks
for each series. The only input of the independent LTSM is
the value at t 1− of the time series it forecasts.

Figure 4 - Univariate FNN using two lagged values of variable X as input.
Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020
DOI: 10.14488/BJOPM.2020.010

7/12

It is necessary to define the number of LSTM units in
the hidden layer before proceeding with the final training.
All LSTM networks used in this study use the same procedure
to select the size of the hidden layer. The procedure starts
with a split of the training set: 2/3 for training and 1/3 for
validation. Several architectures with different number of
units in the hidden layers are evaluated. The procedure
continues with training of the networks on the reduced
training set for a maximum of 1000 epochs, with early
stopping if the validation loss (MSE) does not improve after
10 consecutive epochs. The final LSTM networks, trained
in the entire training set, use the number of hidden units
that presented the smallest average validation loss after
10 training runs.

Exponential Smoothing

Exponential smoothing is a forecasting approach that
uses all historical values as predictors, giving more weight to
more recent values, as in Equation 4 for Simple Exponential
Smoothing (SES). The equation shows that the forecast for
time t 1+ is a weighted average between the most recent
observation tx and the forecast for time t . Recursively
substituting ̂ tx yields Equation 5.

()()ˆ ˆ t 1 t tx x 1 xα α+ = + − (4)

Where:

ˆt 1x + : Forecasted value for x at time t 1+ ;

tx : Actual value for x at time t;

α : Smoothing parameter.

() ()ˆ 2
t 1 t t 1 t 2x x 1 x 1 xα α α α α+ − −= + − + − +… (5)

As long as 0 1α< < , the weight given to each observation
decreases exponentially as each observation comes from
further in the past, hence the name exponential smoothing.
The Holt-Winters procedure, given in the additive form by
Equations 6, 7, 8 and 9, generalizes simple exponential
smoothing, allowing a trend and a seasonal term. Selecting
the best values for the parameters in a Holt-Winters model
is a non-linear optimization problem, and the task requires
an optimization tool.

ˆ
m

t h t t t m hx l hb s ++ − += + + (6)

Where:

b: Trend term;

s: Seasonal term.

() ()()t t t m t 1 t 1l x s 1 l bα α− − −= − + − + (7)

() ()t t t 1 t 1b l l 1 bβ β− −= − + − (8)

() ()t t t 1 t 1 t ms x l b 1 sγ γ− − −= − − + − (9)

Where:

m: Period of seasonality;

, , α β γ : Smoothing Parameters.

This study follows Hyndman et al. (2002) state space
approach for ETS (Error, Trend, Seasonality) model selection.
An ETS model is a statistical model that underlies an ES
method. Each individual time series on the dataset has an
ETS model selected for itself. The R function ets() applies
Hyndman’s approach automatically. It is the computational
tool used for ES method selection and parameter estimation.

Auto Regressive Integrated Moving Average

Auto Regressive Integrated Moving Average (ARIMA)
models combine Auto Regressive (AR) models, Moving
Average (MA) models and differencing. Differencing is
a way to make time series stationary by computing the
differences between consecutive observations. The addition
of differencing allows for non-stationary (on trend)
data. An ARIMA (p,d,q) model combines an AR model of
order p, a MA model of order q and d order differencing as
in Equation 10. The equation uses the backshift operator (B).
The backshift operator shifts the data back one period as
in equation 11.

()() () dp q
1 p t 1 q t1 B B 1 B x C 1 B B wϕ ϕ θ θ− −…− − = + + +…+ (10)

Where:

B: Backshift operator;

ϕ : Auto regressive parameters;

p: Auto regressive order;

θ : Moving average parameters;

q: Moving average order;

d : Differencing order;

w: Error terms;

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020

DOI: 10.14488/BJOPM.2020.010

8/12

t t 1x B x −= (11)

The study uses the R function auto.arima() for model
selection and parameter estimation. It conducts a search
over possible models and selects the best one based on
the smallest Akaike Information Criterion (AIC). Hyndman
and Khandakar (2008) give details on the function
implementation.

Naïve Forecast

A naïve model is a model that presumes things will
remain the same as they have in the past. For time series
data, the naïve (no change) model simply forecasts the
next observation to be equal as the latest observation.
The naïve model serves as a benchmark model for other
models. If a model cannot produce better forecasts than
a simple alternative like naïve no-change, it is of no use
(Armstrong, 2001).

Forecast Evaluation

Forecast accuracy assessment occurs after model
training. The metric used for this model evaluation phase
is the same used in model training: MSE. The accuracy
assessment uses the test set consisting of the last 10% of
the full dataset. The model training phase only uses one-step
ahead forecast. The model evaluation phase tests model
accuracy not only using one-step ahead forecasts, but also
using multistep ahead forecasts. Forecasting windows tested
are 1, 2, 5, 7, 10 and 14 days ahead. Since the models are
configured to produce one step ahead forecasts, a recursive
strategy is applied to generate the multistep ahead forecasts.
The forecast for time t 1+ serves as input for the model to
forecast the values at time t 2+ . This procedure repeats until
the end of the multistep ahead forecast.

Retraining the neural networks after the observation of
every new sample in the test set would require significant
computational resources. In order to avoid the computational
costs, there are no updates to network weights during the
model evaluation stage. With the objective of testing the
different forecasting methods in the same conditions, there
are also no changes to the parameters of the ARIMA and
ETS models, even though the computational costs would be
significant smaller for these methods.

The calculated MSE are the average for all of the time
series. The results do not show what the best method for
each univariate time series would be. They show what
method would deliver the best results, on average, for a
random univariate time series drawn from the dataset,
which in turn consists of a diverse collection of time series
collected from the same industrial turbine.

RESULTS

The model that uses a one hidden layer feedforward neural
network taking as input all of the time series and trying to
predict the next values for all series requires selection of
hyperparameters before training. The hyperparameters
selection phase uses a split of the training set: 2/3 for
training and 1/3 for validation. Table 1 summarizes all the
hyperparameters considered. Table 2 shows the average
validation loss for each of the architectures after 10 training
runs. Based on these results, the final model uses 180 units
in the hidden layer and a single time lag for the inputs.

The model with two hidden layers that predicts all values
simultaneously uses the same 2/3 for training and 1/3 for
validation split for selection of hyperparameters, as in the
one hidden layer model. This step considered the same
possible time lags and units in the hidden layers considered
for the one hidden layer model. Table 3 shows the average

Table 1 - Considered architectures for the one hidden layer feedforward neural network.
Time Lags 1, 2, 3, 4, 5

Hidden Layer Units 1, 2, 5, 10, 20, 33, 50, 66, 100, 133, 150, 180, 200
Source: Authors.

Table 2 - Average validation loss for the considered one hidden layer FNN architectures.

Time Lags
Hidden Layer Units

1 2 5 10 20 50 100 133 160 180 200
1 0.76393 0.62184 0.50953 0.43723 0.32314 0.25762 0.23207 0.23139 0.22623 0.21628 0.22946
2 0.75941 0.62024 0.53573 0.45008 0.38593 0.28650 0.26639 0.26157 0.26087 0.26132 0.25844
3 0.76960 0.64555 0.55353 0.47113 0.38620 0.32633 0.29821 0.29330 0.29665 0.29493 0.28769
4 0.79241 0.69564 0.56170 0.49333 0.39378 0.33650 0.32520 0.32919 0.32796 0.30325 0.32996
5 0.81911 0.67711 0.56336 0.48584 0.40795 0.33522 0.33197 0.34921 0.33123 0.32149 0.33314

Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020
DOI: 10.14488/BJOPM.2020.010

9/12

validation loss for the 10 best architectures after 10 training
runs. Based in these results, the final model uses 160 units
in the first hidden layer, 180 units in the second hidden layer
and a single time lag for the inputs.

The multivariate LSTM model considered uses only one
hidden layer. The input vector uses only one lagged value
from all the series since the states of the LSTM units should
be able to save any relevant information on values of the
time series further back in time. The only hyperparameter
selected for the network is the number of units in the hidden
layer. Table 4 shows the average validation loss for each of
the architectures after 10 training runs. Based on these
results, the final model uses 50 units in the hidden layer.

The prediction methods that use independent networks
for each time series use a hyperparameter selection
procedure similar to the one described for the architectures
that predict all of the time series simultaneously. For the
individual time series, we do not consider two hidden
layers FNN architectures. Table 5 shows the architectures
considered for each independent FNN. The independent

LSTM networks tested use one time lag as input and the
same number of units in the hidden layer as the considered
FNNs. Table 6 shows the selected FNN architectures and
Table 7 shows the selected LSTM architectures for each
univariate time series, based on the average validation loss
after 10 training runs.

Table 8 and Table 9 summarize the results obtained by
applying all the proposed forecasting methods to the test
set. Table 8 shows the MSE for the scenario with models
trained on the normal training set (with extreme outliers).
Table 9 shows the MSE for the scenario with models
trained on the training set without extreme outliers.
The comparison between the two tables show that in general
(26 out of 36 cases) removing the extreme outliers improves
the forecast. However, all instances where the removal
of the extreme outliers worsened the forecast happened
on the methods of better performance (univariate LSTM,
ARIMA and ES).

The forecasting method that showed the worst
performance was the multivariate FNN. To the best of the
authors’ efforts, it was not possible to design and train a
multivariate FNN capable of matching or surpassing the
performance of the other methods, included the use of
univariate FNNs. The multivariate FNNs performs worse
than a simple naïve method in all forecast windows when
trained on the normal training set. When trained on the
training set without extreme outliers, the two hidden layers
FNN is capable of beating the naïve model in three of the
six forecast windows tested. The univariate FNN beats the
naïve forecast in forecast windows equal or bigger than two.

Table 3 - Average validation loss for the top 10 architectures of two hidden layers FNN.
Time Steps Layer-1 Units Layer-2 Units Validation Loss

1 160 180 0.22180
1 200 200 0.22607
1 160 200 0.23345
1 180 100 0.23773
1 180 160 0.23824
1 200 180 0.24917
1 200 160 0.25318
2 100 180 0.25329
2 133 180 0.25388
1 133 133 0.25541

Source: Authors.

Table 4 - Average validation loss for the considered LSTM
architectures.

Hidden Layer Units Validation Loss
1 0.97163
2 0.71791
5 0.64105

10 0.56996
20 0.53536
50 0.48890

100 0.56135
133 0.63046
160 0.69596
180 0.66378
200 0.70038

Source: Authors.

Table 5 - Architectures considered for each independent neural
network.

Time Lags 1, 2, 3, 4, 5
Hidden Layer Units 1, 2, 3, 4, 5, 8, 10, 15, 20

Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020

DOI: 10.14488/BJOPM.2020.010

10/12

The use of LSTM units generally improves the performance
of the neural networks. Similar to the FNN case, using
univariate LSTM networks yields better results than using
a multivariate LSTM. In this study, attempting to capture
the interactions between the different time series did not
produce better forecasts. For forecast windows bigger than
one, the univariate LSTM is capable of delivering better
results than the no-change naïve method.

Exponential smoothing applied to each individual time
series showed the third best performance on the study.
ES only produces worse forecasts than the naïve method in
the one-step ahead forecast scenario, but loses to univariate

LSTM networks in forecasting windows bigger than 2.
The winning method in the evaluation is the use of ARIMA
models, selected for each individual time series, trained on
the original training set (with outliers), using Hyndman’s
approach for model order selection. The use of ARIMA
models consistently beats the naïve forecasts.

The results found by the study show, based on the dataset
explored, that should one select a single method, between
the ones tested in this study, to produce forecasts on a set
of time series drawn from industrial machinery sensors, the
default forecasting method should be the use of independent
ARIMA models selected for each univariate time series.

Table 6 - Selected FNN architecture for each univariate time series.
P1 P2 P3 P4 R1 R2 T1 T10 T11 T12 T13 T14 T2 T3 T4 T5 T6 T7 T8 T9 V1 V10 V11 V12 V2 V3 V4 V5 V6 V7 V8 V9

Hidden
Layer
Units

3 8 10 10 1 3 5 8 8 15 5 8 15 8 15 20 10 4 8 10 15 20 15 5 20 15 20 15 15 15 15 5

Time
Lags 1 4 1 1 5 3 3 2 2 5 2 2 1 1 3 3 2 1 2 3 2 2 3 3 2 1 2 3 1 3 1 2

Source: Authors.

Table 7 - Selected LSTM architecture for each univariate time series.
P1 P2 P3 P4 R1 R2 T1 T10 T11 T12 T13 T14 T2 T3 T4 T5 T6 T7 T8 T9 V1 V10 V11 V12 V2 V3 V4 V5 V6 V7 V8 V9

Hidden
Layer
Units

20 5 3 8 20 20 8 8 5 4 8 10 20 4 20 15 20 4 15 15 15 20 20 1 2 1 1 1 1 2 5 1

Source: Authors.

Table 8 - MSE for each of the forecasting methods using the normal training set.
Days in

Forecast
Window

Normal Dataset Test Loss - Mean Squared Error

FNN1 Mult FNN2 Mult LSTM Mult FNN Uni LSTM Uni ARIMA ES Naive
1 0.31949 0.31099 0.34494 0.20698 0.20318 0.16538 0.18055 0.17894
2 0.40082 0.39742 0.39136 0.25457 0.24811 0.22355 0.25041 0.25484
5 0.63193 0.67098 0.52512 0.35353 0.34054 0.33863 0.40570 0.43541
7 0.81206 0.86482 0.60214 0.39451 0.37599 0.37346 0.45626 0.49433

10 1.24430 1.16320 0.72377 0.45896 0.42069 0.40702 0.50454 0.54906
14 2.10739 1.53733 0.91939 0.54004 0.47653 0.43645 0.54369 0.59119

Source: Authors.

Table 9 - MSE for each of the forecasting methods using the training set without extreme outliers.
Days in

Forecast
Window

Dataset Without Extreme Values Test Loss - Mean Squared Error

FNN1 Mult FNN2 Mult LSTM Mult FNN Uni LSTM Uni ARIMA ES Naive
1 0.27152 0.25390 0.34341 0.20294 0.20947 0.17585 0.18200 0.17894
2 0.32619 0.30878 0.39133 0.25100 0.25354 0.22904 0.25318 0.25484
5 0.44644 0.42141 0.49046 0.35396 0.34265 0.33247 0.41182 0.43541
7 0.50626 0.47053 0.54292 0.40036 0.37726 0.36285 0.46296 0.49433

10 0.59500 0.54547 0.63003 0.46940 0.41971 0.39086 0.51011 0.54906
14 0.68721 0.64024 0.72755 0.54970 0.46524 0.41600 0.54840 0.59119

Source: Authors.

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020
DOI: 10.14488/BJOPM.2020.010

11/12

Not only ARIMA models produced the best forecasts in this
empirical evaluation, but also the computational resources
required to select the model parameters are much smaller.

CONCLUSION

This work empirically evaluated the forecasting
performance of a set of different forecasting methods in a
dataset of industrial sensors time series. The dataset comes
from an oil platforms’ data historian system. The results
show that using ARIMA models to forecast these time
series is the best default methodology to apply, and is the
only methodology that consistently beats a simple naïve
no-change model.

This study presents limitations. There was a focus on
evaluating neural networks. This limited the time available
to evaluate other forecasting methods developed by the
computer science (e.g., Support Vector Regression) and
statistics communities. Moreover, there is no guarantee that
it would not be possible to find neural networks capable of
yielding better forecasts than the ones achieved by the best
performing methods in this research. Other limitation is that
while the dataset consisted of 32 time series, these were
drawn from only 4 types of machine sensors.

Future studies should focus on improving the variety of
the time series in the dataset, assessing a greater variety
of forecasting methods and finding better performance of
models based on neural networks.

REFERENCES

Alarcón, F., Perez, D. and Boza, A. (2016), “Using the
internet of things in a production planning context”,
Brazilian Journal of Operations & Production Management,
Vol. 13, No. 1, pp. 72-6. https://doi.org/https://doi.
org/10.14488/BJOPM.2016.v13.n1.a8

Armstrong, J.S. (2001), Principles of Forecasting: A
Handbook for Researchers and Practitioners, 1st ed., Springer
Science & Business Media, Norwell, MA.

Cho, S., Shin, J.-H., Jun, H.-B. et al. (2016), “A study on
estimating the next failure time of compressor equipment
in an offshore plant”, Mathematical Problems in Engineering,
Vol. 2016, available at: https://www.hindawi.com/journals/
mpe/2016/8705796/abs/ (accessed 2 October 2018).

Chollet, F. (2015), “Keras”, available at: https://keras.io
(accessed 2 October 2018).

Crone, S.F., Hibon, M. and Nikolopoulos, K. (2011),
“Advances in forecasting with neural networks: empirical
evidence from the nn3 competition on time series
prediction”, International Journal of Forecasting, Vol. 27,
No. 3, pp. 635-60.

Datong, L., Yu, P. and Xiyuan, P. (2011), “Online adaptive
status prediction strategy for data-driven fault prognostics of complex
systems”, in Prognostics and System Health Management
Conference, Shenzhen, China, pp. 1-6.

Dragomir, O.E., Gouriveau, R., Dragomir, F. et al.(2009),
“Review of prognostic problem in condition-based maintenance”,
in 2009 European Control Conference (ECC), IEEE, Budapeste,
Hungary, pp. 1587-1592.

Gers, F.A., Schmidhuber, J. and Cummins, F. (1999),
Learning to Forget: Continual Prediction with LSTM, IDSIA,
Switzerland.

Goodfellow, I., Bengio, Y. and Courville, A. (2016), “Deep
Learning: An MIT Press book”, available at: http://www.
deeplearningbook.org (accessed 2 October 2018).

Haykin, S. (2009), Neural Networks and Learning
Machines, 3rd ed., Pearson, Upper Saddle River, NJ.

Heng, A., Tan, A.C., Mathew, J. et al. (2009), “Intelligent
condition-based prediction of machinery reliability”,
Mechanical Systems and Signal Processing, Vol. 23, No. 5,
pp. 1600-14.

Hyndman, R.J. and Khandakar, Y. (2008), “Automatic
time series forecasting: The forecast package for R”, Journal
of Statistical Software, Vol. 26, No. 3, pp. 1-22.

Hyndman, R.J., Koehler, A.B., Snyder, R.D. et al. (2002),
“A state space framework for automatic forecasting using
exponential smoothing methods”, International Journal of
Forecasting, Vol. 18, No. 3, pp. 439-54.

Khashei, M. and Bijari, M. (2010), “An artificial neural
network (p, d, q) model for timeseries forecasting”, Expert
Systems with Applications, Vol. 37, No. 1, pp. 479-89.

Lee, J., Wu, F., Zhao, W. et al. (2014), “Prognostics and
health management design for rotary machinery systems
-- reviews, methodology and applications”, Mechanical
Systems and Signal Processing, Vol. 42, No. 1, pp. 314-34.

Lopes Miranda Junior, H., Albuquerque Bezerra,
N., Soares Bezerra, M. et al. (2017), “The internet of
things sensors technologies and their applications for
complex engineering projects: a digital construction site

Brazilian Journal of Operations & Production Management
Vol. 17, No. 1, e2020607, 2020

DOI: 10.14488/BJOPM.2020.010

12/12

framework”, Brazilian Journal of Operations & Production
Management, Vol. 14, No. 4, pp. 567-76. available at: https://
doi.org/https://doi.org/10.14488/BJOPM.2017.v14.n4.a12
(accessed 12 January 2019).

Ma, X., Tao, Z., Wang, Y. et al. (2015), “Long short-term
memory neural network for traffic speed prediction using
remote microwave sensor data”, Transportation Research
Part C, Emerging Technologies, Vol. 54, pp. 187-97.

Montgomery, D.C. and Runger, G.C. (2010), Applied
Statistics and Probability for Engineers, 5th ed., John Wiley
& Sons, Hoboken, NJ.

Niu, G. and Yang, B.-S. (2010), “Intelligent condition
monitoring and prognostics system based on data-fusion

strategy”, Expert Systems with Applications, Vol. 37, No. 12,
pp. 8831-40.

Pham, H.T., Yang, B.-S., Nguyen, T.T. et al.(2012),
“Machine performance degradation assessment and
remaining useful life prediction using proportional hazard
model and support vector machine”, Mechanical Systems
and Signal Processing, Vol. 32, pp. 320-30.

Qin, S.J. (2014), “Process data analytics in the era of
big data”, AIChE Journal. American Institute of Chemical
Engineers, Vol. 60, No. 9, pp. 3092-100.

Shin, J.-H. and Jun, H.-B. (2015), “On condition based
maintenance policy”, Journal of Computational Design and
Engineering, Vol. 2, No. 2, pp. 119-27.

Received: 30 Oct 2018
Approved: 19 Jul 2019

How to cite: Santos, H.F.R., Silva, L.W.C. and Sobral, A.P.B. (2020), “Forecast of multivariate time series sampled from
industrial machinery sensors”, Brazilian Journal of Operations & Production Management, Vol. 17, No. 1, e2020607.
https://doi.org/10.14488/BJOPM.2020.010

