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ABSTRACT
Goal: To evaluate the performance of a set of forecasting methods in the prediction of 
future values on a dataset of time series collected from sensors installed in an industrial 
gas turbine.
Design / Methodology / Approach: Forecasting methods tested include the use of 
multivariate and univariate neural networks (FNN and LSTM), exponential smoothing 
and ARIMA models.
Results: Results show that the use of ARIMA models to forecast on the dataset is the 
best default method to apply, and is the only forecasting method that consistently beats 
a simple naïve no-change model.
Limitation of the investigation: There was a focus on evaluating neural networks. This 
limited resources available to evaluate other forecasting methods. There is no guarantee 
that it would not be possible to find neural networks capable of yielding better forecasts 
than the ones achieved by the best performing methods in this research.
Practical implications: The broadest possible implications of the results are that the best 
default method to forecast industrial machinery time series is the use of ARIMA models. 
Additionally, neural networks are not capable of beating methods well stablished within 
the forecasting community, namely ARIMA models.
Originality / Value: To the best of the authors’ knowledge, there is a scarce amount of 
published evaluations of multiple forecasting methods on data from real machines. This 
knowledge is useful for the understanding of the best forecasting methods available for 
the estimation of machine’s RUL using sensor time series.
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INTRODUCTION

Condition Based Maintenance (CBM) is a maintenance 
policy that aims to take maintenance action before a 
failure happens. CBM times the maintenance action by 
assessing product condition, and predicting failure based 
on data gathered from the product. While the technologies 
and technical methods for CBM are still in their infancy, 
advancements in information technology have accelerated 
growth in CBM technology by enabling network bandwidth, 
data collection and retrieval, data analysis, and decision 
support capabilities for large datasets of time series. Process 
data, collected in the form of time series, is often compressed 
and archived for record keeping and only retrieved for 
emergency analysis after a fault has occurred. This data 
could be of tremendous advantage when combined with 
effective analytics and superior computing power capable 
of generating knowledge from the data (Qin, 2014; Shin 
and Jun, 2015). The topic of leveraging embedded sensors, 
industrial networks and data mining techniques in order to 
attend high complexity industrial demands also relates to 
the current research trend on the Internet of Things (IoT). 
The four basic aspects of IoTs are reliable and accurate data 
collection; capacity to collect a huge quantity of data; rapid 
data transmission and automated processes (Lopes Miranda 
Junior et al., 2017; Alarcón et al., 2016).

Diagnostics and prognostics are two parts of CBM. 
Diagnostics is a reactive process. It takes place after a fault 
has already occurred and aims to determine the root cause 
of the failure. It cannot prevent machine downtime and 
the corresponding expenses. Prognostics is a proactive 
process. It assesses and predicts future machine health, 
which includes detecting incipient failures and predicting 
remaining useful life (Lee et al., 2014).

There are three classes to the current approaches to 
prognostics: model based, data driven and hybrid. Model 
based approaches presume that it is possible to build a 
mathematical model from the understanding of the physical 
mechanisms involved in the failure modes of the machine 
that bases the model. While these approaches have the 
advantage of providing the ability to incorporate physical 
understanding of the system, if the understanding of the 
system degradation is poor, it may be difficult to model the 
system behavior. Data driven approaches use data gathered 
from sensors or by the machine operators to track features 
that indicate the degradation of the system. Data driven 
approaches can leverage computer intelligence techniques 
like neural networks and decision trees, or statistical 
techniques like auto-regressive models (Dragomir et al., 
2009).

Historically, for time series in diverse domains, empirical 
evaluations showed that statistically sophisticated or 
complex methods do not necessarily produce more 
accurate forecasts than simpler ones. However, recent 
evaluations have concluded that complex methods based 
on computational intelligence and neural networks have 
caught up, and that simple methods can no longer claim to 
outperform computer intelligence methods without a proper 
empirical evaluation (Crone et al., 2011).

Several studies into prognostics have treated it from 
a time series forecasting perspective. Pham et al. (2012) 
used an Auto Regressive Moving Average (ARMA) model on 
baseline data. Pham et al. used deviations from the ARMA 
model on future values as a degradation index. After the 
degradation index reaches a threshold, Pham et al. used 
Cox’s PHM (Proportional Hazards Model) to create a survival 
probability curve as a function of time followed by Support 
Vector Regression (SVR) to predict remaining useful life. 
Heng et al. (2009) used an artificial neural network with 
the most recent values of a condition index (bandpass 
vibration) as inputs to predict probability of failure in fixed 
time intervals ahead of the last condition index measure. 
Heng et al. (2009) benchmarked the proposed model against 
an Elman Recurrent Neural Network (RNN). Datong et al. 
(2011) developed a SVR based strategy for on-line prediction 
of industrial sensor data. The authors tested the strategy on 
a benchmark dataset. Datong et al. compare their proposed 
strategy against a different SVR based strategy. Niu and 
Yang (2010) used a neural network to fuse a set of features 
into a single value used for condition monitoring. After the 
condition index reaches a threshold value two non-linear 
techniques, Dempster-Shafer regression and least-squares 
support vector machines, predict the future behavior of 
the monitored index. A weighted average combines the 
predictions from both methods. Cho et al. (2016) developed 
a hybrid approach to predict the next failure time of a 
centrifugal compressor using vibration data. Bellow a 
threshold value, Cho et al. applied a Markov model to predict 
next failure time. Above the threshold value, Cho et al. apply 
a mix of moving average filter and simple linear regression.

Neural networks have showed good performance when 
applied to time series forecasting in domains other than 
CBM. Khashei and Bijari (2010) introduced an approach 
based on using an Auto Regressive Integrated Moving 
Average (ARIMA) model to extract features from a time 
series. The features serve as training input to a single 
hidden layer feedforward network. Khashei and Bijari (2010) 
test the proposed network on three different time series. 
Ma et al. (2015) used a long short-term memory (LSTM) 
neural network to predict traffic speed. The application of 
time series forecasting methods based on neural networks, 
combined with huge available amounts of historical data, 
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may lead to better prognostics of industrial machines. 
Ultimately, better prognostics lead to reduced maintenance 
costs and increased production availability.

The main goal of this study is to evaluate the performance 
of a set of methods in the prediction of future values of 
monitored parameters in industrial machines. The study 
is an empirical evaluation, done by generating forecasts 
using a dataset collected from an industrial gas turbine. 
It evaluates neural network architectures that take as input 
the entire multivariate time series and output forecasts 
for all monitored parameters at once. Forecasts for each 
individual parameter generated by neural networks, ARIMA 
models, exponential smoothing and naïve models, serve as 
benchmarks against the multivariate architecture.

The contribution of this paper is in the generation of 
knowledge directed specifically to the improvement of 
prognostics, when treated as a time series forecasting 
problem. To the best of the authors’ knowledge, there 
is a scarce amount of published evaluations of multiple 
forecasting methods on data from real machines. This 
knowledge is useful for the understanding of the best 
forecasting methods available for those who want to 
estimate remaining useful life of machines.

The structure of the remainder of this study is as follows. 
Section 2 describes the dataset used in the study and the 
preprocessing applied to the dataset prior to any model 
building. Section 2 also describes the methods used to 
generate forecasts for the time series and the metric for the 
evaluation of the forecasts. Section 3 presents the results 
obtained by applying the proposed methods to the dataset. 
Section 4 provides a conclusion for the study.

THEORETICAL BACKGROUND AND METHODS

Data

This study uses data collected from an oil platform’s data 
historian system. The system stores data from multiple 
sensors installed through the offshore facility. The focus of 
the current research is on data collected from the sensors 
in one of the platform’s gas turbines. The turbine operates 
in power generation role.

The dataset includes values collected from 32 sensors. 
The dataset contains data from four pressure sensors: 
P1 is gas fuel pressure, P2 is pressure at the lubrication oil 
header, P3 is the differential pressure at the inlet air filter 
and P4 is the pressure at the turbine axial compressor 
discharge. Two sensors measure rotation: R1 is the Gas 
Producer (GP) rotor rotation speed and R2 is the Power 
Turbine (PT) rotor rotation speed. The dataset also contains 
data from 14 temperature sensors: T1 is temperature at 
the lubrication oil header, T2 is temperature at the cold 
junction of the thermocouples installed in the turbine 
and T3 is the temperature inside the turbine hood. 
T4 and T8 are oil temperature at inlet of GP and PT rotors 
bearings respectively, T5, T6 and T9 are the temperatures 
at the turbine oil sumps, T7 is flow temperature at axial 
compressor discharge and T10 is the average of the readings 
of 4 thermocouples installed after the first GP turbine wheel 
(T11 thru T14). Twelve vibration sensors complete the 
dataset: V1 thru V10 are radial vibration sensors installed 
at the turbine’s five bearings, V11 is power turbine axial 
vibration and V12 is auxiliary gearbox casing vibration. 
Figure 1 shows a schematic of the turbine instrumentation 
used in this research.

Figure 1 - Position of embedded sensors on the turbine under consideration.
Source: Authors.
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The historian system does not log values for each sensor 
at a fixed sampling rate. Different reasons may trigger a data 
logging event for each sensor. In order to allow the research 
to proceed with the use of standard techniques for evenly 
spaced time series, preprocessing of the dataset aggregates 
the time series into evenly spaced data. Daily bins divide the 
dataset. For each time series, the aggregated values equal 
the mean of the values inside the daily bins. In the event 
there are no values that fall into a daily bin for one of the 
series, a linearly interpolated value substitutes the missing 
value. In order to guarantee secrecy of the real operating 
parameters, normalization of the dataset using a standard 
scaler follows. The resulting series have mean zero, standard 
deviation one and are dimensionless. The resulting dataset 
contains 1461 daily values for the 32 sensors.

The study splits the dataset in two. The first 90% of the 
data serves as training data and the last 10% is the test set, 
used to evaluate the accuracy of the models in proper out 
of training sample data. The model training phase uses both 
the original dataset and a second dataset with extreme 
outliers removed. We define extreme outliers as any value 
that falls outside of a range defined by a distance of three 
interquartile ranges from each edge of a boxplot made with 

all the samples of a time series (Montgomery and Runger, 
2010). The use of the dataset without extreme outliers is 
exclusively for model training. The evaluation of the models 
trained on the dataset without extreme outliers happens on 
the regular test set. Figure 2 shows the preprocessed dataset 
without extreme outliers.

Forecasting Methods

The following subsections describe the forecasting 
methods applied to the dataset. All methods use the first 
90% of data for model training, the definition of model 
parameters. For all models, the training phase defines the 
model parameters using one-step ahead forecasts. In the 
evaluation phase, that uses the remaining 10% of data, there 
are no changes to the model parameters.

Neural Networks

Neural network is a term that encompass a large class 
of models and learning methods. Neural networks are 
nonlinear statistical models that model the outputs as 

Figure 2 - Dataset without extreme outliers.
Source: Authors.
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nonlinear functions of linear combinations of the inputs. 
One builds a neural network by connecting simple computing 
cells called neurons or processing units. This study uses 
neural networks implemented in python using the Keras 
library (Chollet, 2015).

There are three basic elements to a neuron’s model. 
First, a set of connecting links to other neurons, each 
characterized by a weight of its own. Second, an adder, 
often called a propagation function, used to sum all the 
input signals to the neuron. Third is the activation function. 
The activation function limits the output of the neuron and is 
responsible for the nonlinearities in the network. Equation 1 
and Equation 2 give the output xK of a neuron k that uses 
weighted sum as its adder. Haykin (2009) give further details 
on the mathematics of neural networks.

 
m

k kj j k
j 1

v  w x b
=

= +∑   (1)

Where:

kjw : weight of the connection between neuron j and neuron k;

jx : output of neuron j;

kb : the bias of neuron k.

( )k kx vϕ=   (2)

Where:

kv : activation potential of neuron k;

ϕ : the activation function.

One type of neural network used is this study is 
Feedforward Neural Networks (FNN). There are no loops 
in an FNN. A layer only uses as input the output from the 
previous layer. The study tries two approaches to forecasting 
with FNNs. The first approach is to create a FNN that 
uses all series as input and outputs the forecasts for the 
next time step for all of the time series in the dataset at 
once. We expect that this approach, from now on called 
multivariate FNN, will be able to capture the interactions 
between the different time series, resulting in better 
forecasts. Figure 3 shows an example multivariate FNN. 
The second approach, called univariate FNN, is to create 
independent FNNs for each series. The independent FNN 
only uses as input lagged values from the time series it 
forecasts. Figure 4 shows an example univariate FNN.

It is necessary to define the architecture of the FNNs 
before proceeding with the final training. All FNNs used in 
this study use the same procedure for architecture selection. 
The procedure starts with a split of the training set: 2/3 for 
training and 1/3 for validation. Several architectures with 
one or two hidden layers, different number of units in the 
hidden layers and different number of lagged values as input 
are considered. The procedure continues with training of 

Figure 3 - Multivariate FNN using two lagged values of variables X and Y as input.
Source: Authors.
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the networks on the reduced training set for a maximum of 
1000 epochs, with early stopping if the validation loss (Mean 
Squared Error (MSE), as in Equation 3) does not improve 
after 10 consecutive epochs. The final FNNs, trained on the 
entire training set, use the architectures that presented 
the smallest average validation loss after 10 training runs. 
All FNNs use hyperbolic tangent as the activation function 
of the units in the hidden layer.

( )ˆ
 

2k
t tt 1 y y

MSE
k

= −
= ∑   (3)

Where:

ˆty : Forecasted value y at time t;

ty : Actual value for y at time t;

k : Number of forecasted points.

Long Short Term Memory Units

A Recurrent Neural Network (RNN) is a neural network 
that allows feedback loops. The state of a RNN, the 
activations in the hidden units, depends on the past values 
of the state. The presence of feedback loops makes RNNs 
specialized in processing sequential data, like time series. 
RNNs are susceptible to the problem of gradient instability. 

The longer the network runs, the more unstable are the 
gradients on inputs further back in time.

Long Short Term Memory (LSTM) units, are a special 
type of processing unit used to build the hidden layers 
in a LSTM network. LSTM units address the problem of 
gradient instability by creating paths through time that have 
derivatives that will not vanish or explode (Goodfellow et al., 
2016). The LSTM units have an adaptive forget gate designed 
to reset the unit state when its contents are no longer 
relevant. The forget gate controls the weight of the state 
self-loop, and in that way, how much of the information 
in the state is preserved or discarded between time steps. 
Gers et al. (1999) give further detail on LSTM units.

The study tries two approaches to forecasting with LSTM 
networks. All LSTM networks tried use only one lagged value 
as input, since the LSTM units should have the capability 
to accumulate all relevant past information in their states. 
The first approach is to create a LSTM that uses all series as 
input and outputs the forecasts for the next time step for all 
of the time series in the dataset at once. We expect that this 
approach, from now on called multivariate LSTM, will be able 
to capture the interactions between the different time series, 
resulting in better forecasts. The second approach, called 
univariate LSTM, is to create independent LSTM networks 
for each series. The only input of the independent LTSM is 
the value at t 1−  of the time series it forecasts.

Figure 4 - Univariate FNN using two lagged values of variable X as input.
Source: Authors.
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It is necessary to define the number of LSTM units in 
the hidden layer before proceeding with the final training. 
All  LSTM networks used in this study use the same procedure 
to select the size of the hidden layer. The procedure starts 
with a split of the training set: 2/3 for training and 1/3 for 
validation. Several architectures with different number of 
units in the hidden layers are evaluated. The procedure 
continues with training of the networks on the reduced 
training set for a maximum of 1000 epochs, with early 
stopping if the validation loss (MSE) does not improve after 
10 consecutive epochs. The final LSTM networks, trained 
in the entire training set, use the number of hidden units 
that presented the smallest average validation loss after 
10 training runs.

Exponential Smoothing

Exponential smoothing is a forecasting approach that 
uses all historical values as predictors, giving more weight to 
more recent values, as in Equation 4 for Simple Exponential 
Smoothing (SES). The equation shows that the forecast for 
time t 1+  is a weighted average between the most recent 
observation tx  and the forecast for time  t . Recursively 
substituting  ̂ tx  yields Equation 5.

( )( )ˆ ˆ   t 1 t tx x 1 xα α+ = + −   (4)

Where:

ˆt 1x + : Forecasted value for x at time t 1+ ;

tx : Actual value for x at time t;

α : Smoothing parameter.

( ) ( )ˆ 2
t 1 t t 1 t 2x x 1 x 1 xα α α α α+ − −= + − + − +…   (5)

As long as 0 1α< < , the weight given to each observation 
decreases exponentially as each observation comes from 
further in the past, hence the name exponential smoothing. 
The Holt-Winters procedure, given in the additive form by 
Equations 6, 7, 8 and 9, generalizes simple exponential 
smoothing, allowing a trend and a seasonal term. Selecting 
the best values for the parameters in a Holt-Winters model 
is a non-linear optimization problem, and the task requires 
an optimization tool.

ˆ
m

t h t t t m hx  l  hb  s ++ − += + +   (6)

Where:

b: Trend term;

s: Seasonal term.

( ) ( )( )t t t m t 1 t 1l x s 1 l bα α− − −= − + − +   (7)

( ) ( )t t t 1 t 1b l l 1 bβ β− −= − + −   (8)

( ) ( )t t t 1 t 1 t ms x l b 1 sγ γ− − −= − − + −   (9)

Where:

m: Period of seasonality;

, , α β γ : Smoothing Parameters.

This study follows Hyndman et al. (2002) state space 
approach for ETS (Error, Trend, Seasonality) model selection. 
An ETS model is a statistical model that underlies an ES 
method. Each individual time series on the dataset has an 
ETS model selected for itself. The R function ets() applies 
Hyndman’s approach automatically. It is the computational 
tool used for ES method selection and parameter estimation.

Auto Regressive Integrated Moving Average

Auto Regressive Integrated Moving Average (ARIMA) 
models combine Auto Regressive (AR) models, Moving 
Average (MA) models and differencing. Differencing is 
a way to make time series stationary by computing the 
differences between consecutive observations. The addition 
of differencing allows for non-stationary (on trend) 
data. An ARIMA (p,d,q) model combines an AR model of 
order p, a MA model of order q and d order differencing as 
in Equation 10. The equation uses the backshift operator (B). 
The backshift operator shifts the data back one period as 
in equation 11.

( )( ) ( ) dp q
1 p t 1 q t1 B B 1 B x C 1 B B wϕ ϕ θ θ− −…− − = + + +…+   (10)

Where:

B: Backshift operator;

ϕ : Auto regressive parameters;

p: Auto regressive order;

θ : Moving average parameters;

q: Moving average order;

d : Differencing order;

w: Error terms;
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t t 1x B x −=    (11)

The study uses the R function auto.arima() for model 
selection and parameter estimation. It conducts a search 
over possible models and selects the best one based on 
the smallest Akaike Information Criterion (AIC). Hyndman 
and Khandakar (2008) give details on the function 
implementation.

Naïve Forecast

A naïve model is a model that presumes things will 
remain the same as they have in the past. For time series 
data, the naïve (no change) model simply forecasts the 
next observation to be equal as the latest observation. 
The naïve model serves as a benchmark model for other 
models. If a model cannot produce better forecasts than 
a simple alternative like naïve no-change, it is of no use 
(Armstrong, 2001).

Forecast Evaluation

Forecast accuracy assessment occurs after model 
training. The metric used for this model evaluation phase 
is the same used in model training: MSE. The accuracy 
assessment uses the test set consisting of the last 10% of 
the full dataset. The model training phase only uses one-step 
ahead forecast. The model evaluation phase tests model 
accuracy not only using one-step ahead forecasts, but also 
using multistep ahead forecasts. Forecasting windows tested 
are 1, 2, 5, 7, 10 and 14 days ahead. Since the models are 
configured to produce one step ahead forecasts, a recursive 
strategy is applied to generate the multistep ahead forecasts. 
The forecast for time t 1+  serves as input for the model to 
forecast the values at time t 2+ . This procedure repeats until 
the end of the multistep ahead forecast.

Retraining the neural networks after the observation of 
every new sample in the test set would require significant 
computational resources. In order to avoid the computational 
costs, there are no updates to network weights during the 
model evaluation stage. With the objective of testing the 
different forecasting methods in the same conditions, there 
are also no changes to the parameters of the ARIMA and 
ETS models, even though the computational costs would be 
significant smaller for these methods.

The calculated MSE are the average for all of the time 
series. The results do not show what the best method for 
each univariate time series would be. They show what 
method would deliver the best results, on average, for a 
random univariate time series drawn from the dataset, 
which in turn consists of a diverse collection of time series 
collected from the same industrial turbine.

RESULTS

The model that uses a one hidden layer feedforward neural 
network taking as input all of the time series and trying to 
predict the next values for all series requires selection of 
hyperparameters before training. The hyperparameters 
selection phase uses a split of the training set: 2/3 for 
training and 1/3 for validation. Table 1 summarizes all the 
hyperparameters considered. Table 2 shows the average 
validation loss for each of the architectures after 10 training 
runs. Based on these results, the final model uses 180 units 
in the hidden layer and a single time lag for the inputs.

The model with two hidden layers that predicts all values 
simultaneously uses the same 2/3 for training and 1/3 for 
validation split for selection of hyperparameters, as in the 
one hidden layer model. This step considered the same 
possible time lags and units in the hidden layers considered 
for the one hidden layer model. Table 3 shows the average 

Table 1 - Considered architectures for the one hidden layer feedforward neural network.
Time Lags 1, 2, 3, 4, 5

Hidden Layer Units 1, 2, 5, 10, 20, 33, 50, 66, 100, 133, 150, 180, 200
Source: Authors.

Table 2 - Average validation loss for the considered one hidden layer FNN architectures.

Time Lags
Hidden Layer Units

1 2 5 10 20 50 100 133 160 180 200
1 0.76393 0.62184 0.50953 0.43723 0.32314 0.25762 0.23207 0.23139 0.22623 0.21628 0.22946
2 0.75941 0.62024 0.53573 0.45008 0.38593 0.28650 0.26639 0.26157 0.26087 0.26132 0.25844
3 0.76960 0.64555 0.55353 0.47113 0.38620 0.32633 0.29821 0.29330 0.29665 0.29493 0.28769
4 0.79241 0.69564 0.56170 0.49333 0.39378 0.33650 0.32520 0.32919 0.32796 0.30325 0.32996
5 0.81911 0.67711 0.56336 0.48584 0.40795 0.33522 0.33197 0.34921 0.33123 0.32149 0.33314

Source: Authors.
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validation loss for the 10 best architectures after 10 training 
runs. Based in these results, the final model uses 160 units 
in the first hidden layer, 180 units in the second hidden layer 
and a single time lag for the inputs.

The multivariate LSTM model considered uses only one 
hidden layer. The input vector uses only one lagged value 
from all the series since the states of the LSTM units should 
be able to save any relevant information on values of the 
time series further back in time. The only hyperparameter 
selected for the network is the number of units in the hidden 
layer. Table 4 shows the average validation loss for each of 
the architectures after 10 training runs. Based on these 
results, the final model uses 50 units in the hidden layer.

The prediction methods that use independent networks 
for each time series use a hyperparameter selection 
procedure similar to the one described for the architectures 
that predict all of the time series simultaneously. For the 
individual time series, we do not consider two hidden 
layers FNN architectures. Table 5 shows the architectures 
considered for each independent FNN. The independent 

LSTM networks tested use one time lag as input and the 
same number of units in the hidden layer as the considered 
FNNs. Table 6 shows the selected FNN architectures and 
Table 7 shows the selected LSTM architectures for each 
univariate time series, based on the average validation loss 
after 10 training runs.

Table 8 and Table 9 summarize the results obtained by 
applying all the proposed forecasting methods to the test 
set. Table 8 shows the MSE for the scenario with models 
trained on the normal training set (with extreme outliers). 
Table 9 shows the MSE for the scenario with models 
trained on the training set without extreme outliers. 
The comparison between the two tables show that in general 
(26 out of 36 cases) removing the extreme outliers improves 
the forecast. However, all instances where the removal 
of the extreme outliers worsened the forecast happened 
on the methods of better performance (univariate LSTM, 
ARIMA and ES).

The forecasting method that showed the worst 
performance was the multivariate FNN. To the best of the 
authors’ efforts, it was not possible to design and train a 
multivariate FNN capable of matching or surpassing the 
performance of the other methods, included the use of 
univariate FNNs. The multivariate FNNs performs worse 
than a simple naïve method in all forecast windows when 
trained on the normal training set. When trained on the 
training set without extreme outliers, the two hidden layers 
FNN is capable of beating the naïve model in three of the 
six forecast windows tested. The univariate FNN beats the 
naïve forecast in forecast windows equal or bigger than two.

Table 3 - Average validation loss for the top 10 architectures of two hidden layers FNN.
Time Steps Layer-1 Units Layer-2 Units Validation Loss

1 160 180 0.22180
1 200 200 0.22607
1 160 200 0.23345
1 180 100 0.23773
1 180 160 0.23824
1 200 180 0.24917
1 200 160 0.25318
2 100 180 0.25329
2 133 180 0.25388
1 133 133 0.25541

Source: Authors.

Table 4 - Average validation loss for the considered LSTM 
architectures.

Hidden Layer Units Validation Loss
1 0.97163
2 0.71791
5 0.64105

10 0.56996
20 0.53536
50 0.48890

100 0.56135
133 0.63046
160 0.69596
180 0.66378
200 0.70038

Source: Authors.

Table 5 - Architectures considered for each independent neural 
network.

Time Lags 1, 2, 3, 4, 5
Hidden Layer Units 1, 2, 3, 4, 5, 8, 10, 15, 20

Source: Authors.
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The use of LSTM units generally improves the performance 
of the neural networks. Similar to the FNN case, using 
univariate LSTM networks yields better results than using 
a multivariate LSTM. In this study, attempting to capture 
the interactions between the different time series did not 
produce better forecasts. For forecast windows bigger than 
one, the univariate LSTM is capable of delivering better 
results than the no-change naïve method.

Exponential smoothing applied to each individual time 
series showed the third best performance on the study. 
ES only produces worse forecasts than the naïve method in 
the one-step ahead forecast scenario, but loses to univariate 

LSTM networks in forecasting windows bigger than 2. 
The winning method in the evaluation is the use of ARIMA 
models, selected for each individual time series, trained on 
the original training set (with outliers), using Hyndman’s 
approach for model order selection. The use of ARIMA 
models consistently beats the naïve forecasts.

The results found by the study show, based on the dataset 
explored, that should one select a single method, between 
the ones tested in this study, to produce forecasts on a set 
of time series drawn from industrial machinery sensors, the 
default forecasting method should be the use of independent 
ARIMA models selected for each univariate time series. 

Table 6 - Selected FNN architecture for each univariate time series.
P1 P2 P3 P4 R1 R2 T1 T10 T11 T12 T13 T14 T2 T3 T4 T5 T6 T7 T8 T9 V1 V10 V11 V12 V2 V3 V4 V5 V6 V7 V8 V9

Hidden 
Layer 
Units

3 8 10 10 1 3 5 8 8 15 5 8 15 8 15 20 10 4 8 10 15 20 15 5 20 15 20 15 15 15 15 5

Time 
Lags 1 4 1 1 5 3 3 2 2 5 2 2 1 1 3 3 2 1 2 3 2 2 3 3 2 1 2 3 1 3 1 2

Source: Authors.

Table 7 - Selected LSTM architecture for each univariate time series.
P1 P2 P3 P4 R1 R2 T1 T10 T11 T12 T13 T14 T2 T3 T4 T5 T6 T7 T8 T9 V1 V10 V11 V12 V2 V3 V4 V5 V6 V7 V8 V9

Hidden 
Layer 
Units

20 5 3 8 20 20 8 8 5 4 8 10 20 4 20 15 20 4 15 15 15 20 20 1 2 1 1 1 1 2 5 1

Source: Authors.

Table 8 - MSE for each of the forecasting methods using the normal training set.
Days in 

Forecast 
Window

Normal Dataset Test Loss - Mean Squared Error

FNN1 Mult FNN2 Mult LSTM Mult FNN Uni LSTM Uni ARIMA ES Naive
1 0.31949 0.31099 0.34494 0.20698 0.20318 0.16538 0.18055 0.17894
2 0.40082 0.39742 0.39136 0.25457 0.24811 0.22355 0.25041 0.25484
5 0.63193 0.67098 0.52512 0.35353 0.34054 0.33863 0.40570 0.43541
7 0.81206 0.86482 0.60214 0.39451 0.37599 0.37346 0.45626 0.49433

10 1.24430 1.16320 0.72377 0.45896 0.42069 0.40702 0.50454 0.54906
14 2.10739 1.53733 0.91939 0.54004 0.47653 0.43645 0.54369 0.59119

Source: Authors.

Table 9 - MSE for each of the forecasting methods using the training set without extreme outliers.
Days in 

Forecast 
Window

Dataset Without Extreme Values Test Loss - Mean Squared Error

FNN1 Mult FNN2 Mult LSTM Mult FNN Uni LSTM Uni ARIMA ES Naive
1 0.27152 0.25390 0.34341 0.20294 0.20947 0.17585 0.18200 0.17894
2 0.32619 0.30878 0.39133 0.25100 0.25354 0.22904 0.25318 0.25484
5 0.44644 0.42141 0.49046 0.35396 0.34265 0.33247 0.41182 0.43541
7 0.50626 0.47053 0.54292 0.40036 0.37726 0.36285 0.46296 0.49433

10 0.59500 0.54547 0.63003 0.46940 0.41971 0.39086 0.51011 0.54906
14 0.68721 0.64024 0.72755 0.54970 0.46524 0.41600 0.54840 0.59119

Source: Authors.
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Not only ARIMA models produced the best forecasts in this 
empirical evaluation, but also the computational resources 
required to select the model parameters are much smaller.

CONCLUSION

This work empirically evaluated the forecasting 
performance of a set of different forecasting methods in a 
dataset of industrial sensors time series. The dataset comes 
from an oil platforms’ data historian system. The results 
show that using ARIMA models to forecast these time 
series is the best default methodology to apply, and is the 
only methodology that consistently beats a simple naïve 
no-change model.

This study presents limitations. There was a focus on 
evaluating neural networks. This limited the time available 
to evaluate other forecasting methods developed by the 
computer science (e.g., Support Vector Regression) and 
statistics communities. Moreover, there is no guarantee that 
it would not be possible to find neural networks capable of 
yielding better forecasts than the ones achieved by the best 
performing methods in this research. Other limitation is that 
while the dataset consisted of 32 time series, these were 
drawn from only 4 types of machine sensors.

Future studies should focus on improving the variety of 
the time series in the dataset, assessing a greater variety 
of forecasting methods and finding better performance of 
models based on neural networks.
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