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OPTIMIZATION OF MACHINING PARAMETERS DURING DRILLING BY TAGUCHI BASED 
DESIGN OF EXPERIMENTS AND VALIDATION BY NEURAL NETWORK

ABSTRACT
Drilling is a hole making process on machine components at the time of assembly 

work, which are identify everywhere. In precise applications, quality and accuracy play a 
wide role. Nowadays’ industries suffer due to the cost incurred during deburring, espe-
cially in precise assemblies such as aerospace/aircraft body structures, marine works and 
automobile industries. Burrs produced during drilling causes dimensional errors, jamming 
of parts and misalignment. Therefore, deburring operation after drilling is often required. 
Now, reducing burr size is a serious topic. In this study experiments are conducted by 
choosing various input parameters selected from previous researchers. The effect of al-
teration of drill geometry on thrust force and burr size of drilled hole was investigated 
by the Taguchi design of experiments and found an optimum combination of the most 
significant input parameters from ANOVA to get optimum reduction in terms of burr size 
by design expert software. Drill thrust influences more on burr size. The clearance angle 
of the drill bit causes variation in thrust. The burr height is observed in this study.  These 
output results are compared with the neural network software @easy NN plus. Finally, it is 
concluded that by increasing the number of nodes the computational cost increases and 
the error in nueral network decreases. Good agreement was shown between the predic-
tive model results and the experimental responses.  

Keywords: Drill Thrust; Burr Size; Aluminium 2014 Alloy; Taguchi Design of Experiments; 
Neural Network.

Reddy Sreenivasulu
rslu1431@gmail.com
Rvr&Jc College of Engineering, 
India

Chalamalasetti SrinivasaRao
csr_auce@yahoo.co.in
Andhra University, Visakhapatnam



Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 294-301

DOI: 10.14488/BJOPM.2018.v15.n2.a11

295

1. INTRODUCTION

Drilling operations usually produce burrs on both the 
entrance and the exit surfaces of the work piece. It is 
formed as a result of plastic deformation, which depends 
in large measure on the ductility of the material. Drill-
ing burrs are the main handicap to reach the automa-
tion of assembly processes because of the necessity of 
deburring operations. Burrs are a source of dimension-
al errors, jamming and misalignment. They may cause 
short circuits in electrical parts, reduce the fatigue life of 
components or act as a crack initiation point (Gillespie, 
1999; Aurich et al., 2009). For these reasons, the reduc-
tion of quality in drilling processes is a critical problem 
for the aeronautics and aerospace industries. Small burrs 
are allowed, but they have to be below a certain height. 
Therefore, deburring operation after drilling is often re-
quired. In aeronautics assembly, the components to be 
joined are drilled in stacks (multi-layers). Once the holes 
are made, components have to be separated in order to 
deburr and remove the remaining lubricant or chips. This 
means an additional work which can reach 30% of the to-
tal machining costs in precision operations (Aurich et al., 
2009). Most of these problems are related to exit burr 
because it is much larger than that in the drill entrance. 
Hence, most research on this topic is often focused on 
the development of strategies to minimize exit burr.

1.1 Neural Network

An Artificial Neural Network (ANN) is: “an informa-
tion processing paradigm, such as the brain, is the pro-
cess information. The key element of this paradigm is 
the structure of the information processing system. It 
is composed of a large number of highly interconnected 
processing elements called neurons working in unison 
to solve specific problems. ANNs can be used to identify 
patterns and trends from complex or vague data that are 
very complicated to recognize by human being or other 
computer techniques. The ANN has to be trained using a 
learning process. The trained network can then be used 
to gain insight into new situation and to answer “what if” 
questions. Because of their immense ability to identify 
patterns or trends in data they have been greatly used 
in many applications, including forecasting, industrial 
process control, customer research, data validation, and 
risk management, etc. There are various types of neu-
ral networks available, such as feed forward neural net-
work with single- and multi-perceptron, Adaline, radial 
basis function, and Kohenen self-organizing map. Among 
them, the feed forward networks are the most simple and 
are used in prediction by training input data to obtain 
the desired output. The basic architecture of feed-for-
ward networks with multi-layer perceptron is as shown 

in the Figure. The first layer is called the input layer, and 
the last layer is the output layer. The intermediate layer 
is called hidden layer and it can be more than one. The 
information is fed forward from the input layer to out-
put layer through the hidden layers in a simple feed-for-
ward neural network model. Thus, in the back propaga-
tion neural networks, the output value is compared to 
the desired value and the difference is back propagated 
through the network. The back propagation algorithm 
adjusts the weights of the neural network such that the 
output of the network matches the desired output. This 
cycle is repeated until the desired value is obtained with 
minimum root mean square error and is basically called 
training the neural network (Raymond, 1998).

1.2 Burr formation

A burr is a body created on a workpiece surface during 
the manufacturing of a workpiece, which extends over 
the intended and actual workpiece surface and has a 
slight volume in comparison with the workpiece, unde-
sired, but to some extent, unavoidable. The presence of 
burrs on the edges of parts after machining, which may 
bring about a number of problems, turns deburring into 
a necessary part of the production process.

Burr removal is a non-value added process and might 
represent as much as 30 percent of the cost of fin-
ished parts (shown fig.1) (Berger, 2002). As deburring 
is non-productive and costly finishing process, it should 
be minimized or avoided. Any material leading to limited 
burr formation is therefore advantageous. Recent stud-
ies and literature have pointed out tremendous issues 
related to burr formation and deburring operations, in-
cluding:

• Small finger injuries for assembly workers

• Source of debris (bits of burrs) during operation, 
thereby reducing the life time of the machined 
part

• Changing parts resistance and reduction of tool 
life and efficiency

• Presentation of hazard in handling of machined 
parts, which can interface with subsequent as-
sembly operations; 

• Burrs that are adhered to the work part may be-
come loose during operation, and consequently 
cause difficulties and damage.
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Figure 1. Investment in deburring systems as a function of part 
complexity in manufacturing [4]

2. BACKGROUND LITERATURE

A lot of research has been conducted using neural net-
works in the field of machining. However, very few studies 
have used neural networks to predict burr height. The review 
of past studies carried out in drilling using neural networks is 
described below: Sudhakaran (1999) proposed a neural net-
work model to identify the effect of drill geometry, specifi-
cally lip height and point angle on burr height in the drilling 
of aluminum 2024-T3. Feed, lip height and point angle were 
inputs to the model with output being burr height. The best 
architecture was 4-6-4 and showed good consensus with the 
experimental result. It was noted that burr height increases 
with the increase in lip height irrespective of any point angle. 
Sokolowski et al. (1994) proposed a neural network model to 
predict the burr height by considering the effect of cutting ve-
locity, feed, depth of cut, work piece material and exit angle 
on burr formation. A feed forward back propagation neural 
network was used with a structure of 5-10-3. The output was 
classified into three types of burr, namely small medium and 
large based on the height of the burr. The developed model 
successfully predicted the burr height in face milling. It was 
also evident that neural network could act as a universal tool 
to model burr formation and it would also be very important 
from practical application standpoint because of their relative 
use of small data sets. Hambli (2002) developed a neural net-
work model to predict burr height in blanking process. The 
input to the feed forward neural network model was tool die 
clearance and punch–die clearance and wear state of the tool 
and the corresponding output was burr height. The model 

showed good agreement with the experimental results with 
an error of less than 0.1% for any point. Karri (1999) predicted 
thrust and torque in drilling operations using neural networks. 
Eight inputs were considered and the result showed an aver-
age percentage deviation of less than 2% at the testing stage. 
Both thrust and torque were predicted to targeted accuracy 
with the help of neural networks, which was very difficult to 
achieve using conventional mechanics of cutting approach 
for prediction of thrust and torque. Sanjay and Jyothi (2006) 
proposed a back propagation neural network model to pre-
dict surface roughness in drilling. Drill diameter, feed, speed 
and machine time were used as input to ANN model. Fur-
ther neural network model was more consistent for different 
combinations of speed and feed compared to mathematical 
model developed to predict surface roughness. Singh et al. 
(2006) developed a neural network model to predict flank 
wear. Various process parameters, such as speed, feed, thrust 
force, torque force, and drill diameter were considered as in-
puts and the corresponding maximum flank wear was mea-
sured. The network parameters, such as momentum coeffi-
cient, number of hidden layers, and learning coefficient were 
determined on trial and error. The best network architecture 
was considered to be 5-4-1, depending on the mean square 
error. Out of 49 data values, 34 were used for training the net-
work and 15 were used for testing. The output showed good 
agreement with the experimental results. Therefore, neural 
network was considered as an important tool for prediction 
of drill wear. Dini (2003) developed a neural networks mod-
el to predict delamination in drilling of glass fiber reinforced 
plastic (GFRP). The delamination was measured at both entry 
and exit sides of the tool. Peel–up and push-out damage were 
measured at entry and exit side respectively as a function of 
feed rate, tool size and cutting forces. Two types of neural 
network model were developed to analyze and predict the 
delamination. The Use of the first network delamination was 
categorized into 4 groups, namely no damage, and low, medi-
um and high damage, while the second network was used to 
predict the damage. The developed model showed very good 
agreement with the experimental results. Mahfouz (2001) 
proposed a neural network model to monitor tool wear. Vi-
brations and acoustic emissions were measured for 0.5 diam-
eter HSS twist drills. Based on the experimental results, wear 
was classified into four types of categories. The wears were 
classified as chisel wear, rake crater, edge fracture, and cor-
ner wear. This information was fed into the neural network. 
The network correctly identified the chisel and corner wear 
up to 80% accuracy and edge and crater wear to around 70% 
accuracy. Chao and Hwang (1997) proposed a neural network 
model for the prediction of cutting tool life. Experiments were 
conducted to collect tool life data on lathe for turning opera-
tion. Each experiment is performed until a flank wear reaches 
a maximum of 0.7mm. The tool life is obtained by summing 
up the total cutting time. The results of this experiment were 
used in the development of a neural network model. The re-
sults were then compared against backward stepwise regres-
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sion model and the artificial neural network model made the 
most accurate prediction. Karri et al. (2002) proposed a three 
layer neural network model to determine the internal surface 
roughness in drilling. Three types of neural network model 
were developed and the one that had the lowest RMS error 
was selected for prediction. The input to the model was fre-
quency, speed, thrust, feed, tool type, diameter, and torque. 
The experiments were tested for 15 different conditions and 
out of which 12 exhibited an error of less than ± 0.7µm, show-
ing considerable prediction capability.

3. MOTIVATION OF THE PRESENT WORK

3.1 Methodology

The orthogonal array forms the basis for the experimen-
tal analysis in the Taguchi method. The selection of orthog-
onal array is concerned with the total degree of freedom of 
process parameters. Total degree of freedom (DOF) associ-
ated with five parameters is equal to 10 (5X2). The degree 
of freedom for the orthogonal array should be greater than 
or, at least, equal to that of the process parameters. There 
by, a L27 orthogonal array having degree of freedom equal 
to (27-1) 26 has been considered, which is used to optimize 
the drilling parameters for burr size, thrust force, surface 
roughness, and roundness error using S/N ratio and ANO-
VA for machining of Al 2014 alloy. By means of the taguchi 
techniques, industries are able to greatly reduce the prod-
uct development cycle time for design and production, thus 
reducing costs and increasing profit. Moreover, the neural 
network (NN) technique has been applied to compare the 
predicted values with the experimental values and compare 
the error between the experimental values. Finally, a confir-
mation test has been carried out to compare the predicted 
values with the experimental values, and confirm its effec-
tiveness in the analysis of the measured responses.

3.2 Schematic Machining:

In this study, the experiments were carried out on a Radi-
al drilling machine (Make: Siddapura Machine Tools, Gujarat, 
INDIA) to perform different size holes on Al 2014 alloy work 
piece (300x50x10mm) by altering the point and clearance an-
gles on standard HSS twist drill bits and maintaining constant 
helix angle of 30 degrees. Furthermore, the speed (rpm), feed 
rate (mm/rev), and drill diameter (mm) are varied.

3.2.1 Measuring Apparatus

The burr size (thickness and height) is measured by tool 
maker’s microscope and digital profile projector. During the 

drilling operation performed on material, thrust force was 
measured by kistler dynamometer.

Table 1. Experimental Planning as per Taguchi Method

LEV-
ELS

FACTORS

CUTTING 
SPEED 
(rpm)

FEED 
RATE
(mm/
min)

DRILL
 DIAM-
ETER 
(mm)

POINT 
ANGLE 

(0)

CLEARAN 
E ANGLE 

(0) 

A B C D E
1 465 18 8 1000 40
2 695 20 10 1100 60
3 795 26 12 1180 80

Table 2. Comparison of Experimental Results vs Neural Network 
Results

Experimental Results Exp.
No

Simulation Results
Burr 

height
(mm)

Burr 
thick
(mm)

Thrust 
Force

N

Burr 
heigt
(mm)

Burr 
thick
(mm)

Thrust 
Force

N
R1 R2 R3 R1 R2 R3

0.324 0.278 262 1 0.3217 0.3033 247.417
0.283 0.316 288 2 0.3218 0.2649 294.845
0.342 0.282 241 3 0.3123 0.2846 233.883
0.285 0.278 235 4 0.2982 0.2673 194.220
0.378 0.268 335 5 0.3209 0.2747 297.164
0.284 0.297 252 6 0.3281 0.2547 305.349
0.438 0.349 241 7 0.4063 0.3907 230.635
0.345 0.291 335 8 0.3443 0.2791 371.287
0.312 0.254 395 9 0.2967 0.2239 333.818
0.338 0.443 232 10 0.3347 0.4133 219.314
0.262 0.359 248 11 0.3042 0.3316 284.637
0.328 0.248 265 12 0.3402 0.2368 313.215
0.528 0.296 316 13 0.5422 0.2853 321.184
0.291 0.232 286 14 0.3026 0.2361 261.305
0.387 0.264 202 15 0.3737 0.2121 208.967
0.314 0.411 208 16 0.4257 0.2161 242.604
0.429 0.347 265 17 0.4075 0.3371 237.603
0.541 0.320 265 18 0.5421 0.3311 255.738
0.314 0.289 316 19 0.3092 0.2783 287.987
0.269 0.331 286 20 0.3091 0.2821 287.286
0.326 0.238 252 21 0.3086 0.2453 258.758
0.354 0.212 241 22 0.3416 0.2142 248.665
0.281 0.252 135 23 0.2844 0.2122 147.946
0.396 0.223 395 24 0.3899 0.2123 343.792
0.386 0.252 186 25 0.3931 0.2776 184.177
0.423 0.319 252 26 0.4184 0.3299 254.664
0.541 0.248 316 27 0.5432 0.2538 313.309
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4. RESULTS AND DISCUSSIONS:

4.1 Experimental Results

From main effects plot of S/N ratio for, the optimum pa-
rameters combination of all responses are A2B3C5D4E1, 
corresponding to the largest values of S/N ratio for all control 
parameters. From Table 3, it is observed that the clearance 
angle has more influence out of all parameters; feed rate has 
moderate influence; and cutting speed has less influence on 
all multi responses. For confirmation of significance of in-
put parameters the analysis of variance is determined. The 
effects of input parameters versus output response graphs 
are drawn and the individual effects of input factors are ana-
lyzed. These factors are discussed in conclusions chapter. Fi-
nally, the interaction of individual factors over outputs found 
through the graphs obtained by design software was known.

Table 3. Response Table for Signal to Noise Ratios
Smaller is better

Spindle Feed Rate(B) drill Point Clear-
ance

Level Speed 
(A)rpm

mm/
min

diame-
ter (C)

mm

Angle 
(D)

degree

Angle 
(E)

degree
1 -44.11 -43.92 -43.58 -43.93 -41.74
2 -42.05 -41.95 -42.09 -42.15 -42.53
3 -42.35 -42.64 -42.84 -42.43 -44.23

Delta 2.06 1.97 1.49 1.77 2.49
Rank 2 3 5 4 1

Table 4. Analysis of Variance (Burr height)

Source DF Adj SS Adj MS F-Value P-Value
Spindle 

Speed(A)
rpm

2 0.010671 0.005335 1.05 0.373

Feed Rate(B) 
mm/min 2 0.049803 0.024901 4.89 0.022

Drill diame-
ter(C)mm 2 0.000173 0.000086 0.02 0.983

Point 
Angle(D)
degrees

2 0.012742 0.006371 1.25 0.313

Clearance 
Angle(E)
degrees

2 0.014052  0.007026 1.38 0.280

  Error 16 0.081427 0.005089
  Total 26 0.168867

Table 5. Analysis of Variance (Burr thickness)

Source DF Adj SS Adj MS F-Value P-Value
Spindle 

Speed(A)rpm 2 0.017237 0.008618 4.89 0.022

Feed Rate(B) 
mm/min 2 .016054 0.008027 4.55 0.027

Drill diame-
ter(C)mm 2 0.001581 0.000790 0.45 0.647

Point Angle(D)
degrees 2 0.004737 0.002369 1.34 0.289

Clearance An-
gle(E)degrees 2 0.011603  0.005802 3.29 0.064

  Error 16 0.028213 0.001763
  Total 26 0.079425

Table 6. Analysis of Variance (Thrust Force)

Source DF Adj SS Adj MS F-Value P-Value
  Spindle 

Speed(A)rpm 2 5159.2 2579.6 0.62 0.552

  Feed Rate(B) 
mm/min 2 366.9 183.5 0.04 0.957

  drill diame-
ter(C)mm 2 7589.5 3794.8 0.91 0.424

  Point Angle(D)
degrees 2 1066.7 533.3 0.13 0.881

  Clearance An-
gle(E)degrees 2 6710.7 3355.3 0.80 0.466

  Error 16 66948.0 4184.3
  Total 26 87841.1
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Figure 3. Interacti on plot for output responses (g, h, i, j, k)

4.2 Neural Net Work Results

Arti fi cial neural systems are physical cellular systems that 
acquire store and uti lize experimental informati on. Powerful 
learning algorithm and self-organizing rule allow ANN to self-
adapt according to the requirements in a conti nually varying 
environment (adaptability property). The ANN architecture 
is a multi layer, feed forward back propagati on architecture. 
Multi layer percepti on (MLP) has an input layer, output lay-
er, and hidden layer. The input vector is an incident on the 
input layer and then on the hidden layer and, subsequently, 
on the fi nal layer/output layer via weighted connecti ons. A 
neural network is a machine that is designed to model the 
way in which the brain performs a parti cular task or func-
ti on of interest. To achieve good performance, they employ 
a massive interconnecti on of machine that can be defi ned 
as a neural network, as it is a massively parallel distributed 
processor made up of simple processing units, which has a 
natural propensity for storing experimental knowledge and 
making it available for use.

 

Figure 4. Feed Forward Neural Network block diagram and result

 (l)

 (m)

 (n)

 (o)

 (p)
Figure 5. Validati on of experimental results with neural network
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The experimental observations were incorporated into the 
NN model. A feed forward neural network was developed to 
predict all outputs. Predicted and experimental values of all re-
sponses are depicted in table 2.

5. CONCLUSIONS

The machining characteristics of Al2014 alloy have been stud-
ied. The primary machining characteristics, such as drill thrust, 
burr size, surface quality, and circularity deviation were studied. 
The results obtained from the experiments are the following.

• From S/N Ratio response graph, the combination of 
parameters having the values of A2B3C5D4E1 obtained 
for input parameters in an order. 

• From S/N Ratio response table, clearance angle is the 
most influencing factor on burr size, during drilling of 
Al2014 alloy. 

• From the results, ANOVA for feed rate is the most signif-
icant factor for almost all responses.

• From results of NN, it is concluded that the experiment 
No. 15 obtained relatively more errors than the remain-
ing. The deviation between the experimental values 
and the prediction values are found in the range of 3 to 
4%. Finally, it is concluded that by increasing the num-
ber of nodes the computational cost increases and the 
error decreases. Good agreement was shown between 
the predictive model results and the experimental mea-
surements. 

REFERENCES

Aurich, J. C. et al. (2009), “Burrs-Analysis, control and remov-
al”, in: CIRP Annals-Manufacturing Technology, Vol. 58, No. 2, 
pp. 519-42.

Berger, K. (2002), “Burr Reduction Investment - Production 
Costs - Burr Reduction -Prediction of Burrs.”, in: Presentation at 
HPC Workshop, CIRP, Paris, 23 jan., 2002.

Received: 14 Jan 2018 

Approved: 08 May 2018

DOI: 10.14488/BJOPM.2018.v15.n2.a11

How to cite: Sreenivasulu, R., SrinivasaRao, C. (2018), “Optimization of  machining parameters during Drilling 
by Taguchi based Design of Experiments and Validation by Neural Network”, Brazilian Journal of Operations & 
Production Management, Vol. 15, No. 2, pp. 294-301, available from: https://bjopm.emnuvens.com.br/bjopm/
article/view/440 (access year month day).


