
Brazilian Journal of Operations & Production Management 15 (2018), pp 254-269

ABEPRO
DOI: 10.14488/BJOPM.2018.v15.n2.a8

USING METAHEURISTIC ALGORITHMS FOR SOLVING A MIXED MODEL ASSEMBLY LINE
BALANCING PROBLEM CONSIDERING EXPRESS PARALLEL LINE AND LEARNING EFFECT

ABSTRACT
Mixed-model assembly line attracts many manufacturing centers’ attentions,

since it enables them to manufacture different models of one product in the same line.
The present work proposes a new mathematical model to balancing mixed-model assem-
bly two parallel lines, in which first one is a common line and the other is an express line
due to more modern technology or operators with higher skills. Therefore, the cost of
equipment and skilled labor in the express line is higher, and also, the learning effect on
resource dependent task times and setup times is considered in the assemble-to-order
environment. The aim of this study is to minimize the cycle time and the total operating
cost and smoothness index by configuration of tasks in stations, according to their pre-
cedence diagrams. Also, assigning the assistants to some tasks in some stations and for
some models is allowed. This problem is categorized as an NP-hard problem and for solv-
ing this multi-objective problem, non-dominated sorting genetic algorithm ІІ (NSGA-II)
and multi-objective particle swarm optimization (MOPSO) are applied. Finally, for com-
paring the proposed methods some numerical examples are implemented and the result
show that MOPSO outperforms NSGAII.

Keywords Mixed-model assembly line; Balancing; Learning effect; Parallel line.

Masoud Rabbani
mrabani@ut.ac.ir
University of Tehran, Islamic
Republic of Iran

Farahnaz Alipour
farahnaz.alipour@yahoo.com
University of Tehran, Islamic
Republic of Iran

Hamed Farrokhi-Asl
hamed.farrokhi@alumni.ut.ac.ir
Iran University of Science &
Technology, Islamic Republic of Iran

Neda Manavizadeh
n.manavi@khatam.ac.ir
KHATAM University, Islamic
Republic of Iran

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

255

1. INTRODUCTION

In modern manufacturing systems, flexibility in product
mix is a common problem to satisfy in a cost-effective man-
ner when there are various customized demands. Moreover,
because of the existing competitive environment for pro-
ducers, the mixed-model assembly line attracts many manu-
facturing centers’ attentions that can manufacture different
models of one product in same line. In assembly lines, bal-
ancing and sequencing are two main issues. Due to the in-
creasing trend towards using the mixed model assembly line
and the instability of market demand, these two issues have
been taken into consideration by many researchers over
the past two decades (Ramezanian and Ezzatpanah, 2015).
Salveson (1955) published the first study in the assembly
line balancing problem (ALBP). The main purpose of ALBP
is to assign a limited set of tasks to workstations regarding
the confirmation of precedence relations and to optimize
some effectiveness measures, such as cycle time, number
of workstations, line efficiency, or idle time (Erel and Sarin,
1998). Following the classification, Boysen et al. (2007) stat-
ed that ALBP can be classified into three groups, according
to the number of models: single-model ALBP, whose only
product is produced in the lines; multi-model ALBP different
products are produced in batches; and mixed-model ALBP,
varying models of one product are assembled on the same
assembly processes. Reduction in investment production,
risks of uncertainty environment and cost of equipment and
also quick response to the different requirements are some
of the advantages of the mixed model assembly lines (Erel,
1998, McMullen, 1997, Miltenburg, 2002).

For simplifying this problem, in simple assembly line bal-
ancing problems (SALBP), some assumptions are assumed.
Until now these assumptions have been used in many stud-
ies (Baybars, 1986; Cakir et al., 2011; Michalos et al., 2010).
In the sequence, these assumptions are discussed:

1) Considering mass production of the same model
with a definite process

2) There is no substitute for processes.
3) Considering paced line with constant cycle time C
4) Locating is linearly performed with m unilateral sta-

tion and without any feeding lines or parallel lines.
5) The only limitation is prerequisite for the allocation

of activities.
6) The duration time of activities is definitive.
7) An activity could not be divided in two separate sta-

tions.
8) All stations are equipped with the machinery and

employees in the same way.

By changing variables, the different models of SALBP are
obtained. In the following four main models for SALBP are
described.

When the cycle time value is given and the aim of the
problem is minimizing the number of station, the model of
SALBP is type 1 (SALBP-1) and when the station number is
given and the aim of the problem is to minimize the cycle
time value, the problem is type 2 (SALBP-2).

When both of them are unknown variables and the aim
of problem is to minimize the number of stations and cycle
time simultaneously, considering the maximum efficiency,
the model is converted to a simple assembly line, balancing
problem, considering efficiency (SALBP-E).

Simple assembly line balancing feasibility problem
(SALBP-F) is an NP-complete problem that, given both the
number of station and the cycle time values, the feasibility of
the problem is checked and a feasible solution is discovered.
Thus, this method deals with the SALBP as a NP-hard prob-
lem (Rabbani et al., 2014). Therefore, by eliminating some
simplified assumptions and adding up some constraint the
SALBP addresses generalized assembly line balancing prob-
lem (GALBP) that is a more realistic model. In the following,
the assumption of GALBP is discussed:

1) It is possible to produce more than one type of prod-
uct.

2) A set of different alternative processes can be con-
sidered.

3) It is possible to plan the production line in such a
way that it satisfies the amount of the target produc-
tion in a certain planning horizon and this planning
can be obtained by considering the cycle time aver-
age in computations.

4) Considering unidirectional flow line.
5) The sequence of activities follows the precedence

limitations.
6) The 5 to 7 assumptions of SALBP are given up.

Mixed-model assembly line balancing (MMALB) is one
of the GALBP problem that has greater flexibility than the
single-model and the multi-model (Palau Requena, 2013).
Generally, MMALBP-1, MMALBP-2 and MMALBP-E are
three types of problems which are faced in the literature of
MMALBP. The main purpose in MMALBP-1 (MMALBP-2) is to
minimize the number of workstations (cycle time) for a given
cycle time (number of workstations) and to utilize combined
precedence diagram that converts all of the precedence di-
agrams into one diagram that has permissible orderings of
the tasks for the M models (Gökċen and Erel, 1998). Consid-
ering flexible resource dependent operation times in assem-
bling various models, MMALBP-2 seems to be more suitable
for this problem.

Most of the research focused on the ‘operation’ time,
which is the time of net value-adding processes, assumed
that the task order has no effect on the inter-task times.
However, in many real situations the task sequences re-

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

256

markably affect the inter-task times (Scholl and Voß, 1997).
Due to the importance of this issue in the system design,
recently a few studies considered the sequence dependent
setup times in a single model assembly line balancing prob-
lem (Scholl, 2008; Andres, 2008; Özcan, 2010). Nowadays,
by increasing the variety requirement of customers and
considering the mixed model assembly lines in production
systems, the inter-task times attract more attention due to
the main effect of switching time between different models
on line performance that include setup change (Wilhelm,
1999). The remainder of this paper is structured as follows:
a review of literature is described in section 2. A problem
description and its mathematical formulation are given in
Section 3. The solution procedures are presented in Section
4. Numerical examples are presented in Section 5. Finally,
the conclusion of the article is provided in Section 6.

2. LİTERATURE REVİEW

There are many researches on the ALBP in the literature
(Becker and Scholl, 2006;Boysen et al., 2007; Boysen et al.,
2008; Ghosh and Gagnon, 1989). Some well-known objective
functions in ALBP are minimizing the number of workstations,
minimizing the cycle time, maximizing the line efficiency
(Boysen et al., 2007), maximizing workload smoothness (Ne-
archou, 2008), minimizing the smoothness index presented
by Ponnambalam et al. (2000), and minimizing the total cost
(Jayaswal and Agarwal, 2014; Tiacci, 2015).

Due to many advantages, such as ease of balance work-
load between stations, increased reliability, more flexibility in
scheduling, worker satisfaction, a parallel arrangement of lines
that provides further improvements in terms of flexibility, and
sensitivity to fail was used. Therefore, the use of parallel mixed
model assembly lines is improving system performance and in-
creasing productivity (Süer, 1998). Süer (1998) was the first au-
thor to consider parallel assembly lines very limited, as well as
studies on single model parallel assembly lines balancing have
reported the same, as in the case of Benzer et al. (2007), Scholl
and Boysen (2009), and Gökçen et al. (2006), and he defined a
problem in designing parallel assembly lines when the number
of productions is too high and there are more workers required
and the objective is to find out the number of assembly lines
that minimizes total manpower.

Reducing the number of workstations, and subsequent-
ly, reducing the idle time, and reducing the cycle time and
achieving high production rates are the other advantages
that could be achieved by using parallel assembly lines (Buk-
chin and Rubinovitz, 2003, BARD, 1989).

Gökçen et al. (2006) examined the balancing of the par-
allel assembly lines. Scholl and Boysen (2009) proposed a
model for designing parallel assembly lines with split work-
places and they indicated that increased productivity can be

combined with the adjacent stations and also the objective
function is to minimize the work space and the number of
operators. Ozbakir et al. (2011) presented one of the first
attempts in terms of modeling and solving the parallel as-
sembly line balancing problem wherein they used swarm-in-
telligence-based metaheuristics. Rabbani et al. (2014) used
genetic algorithm (GA) to solve MMALB, considering express
parallel line that works faster and produces similar mixed
products, and also they considered different alternatives
for selling products. Kucukkoc and Zhang (2015) developed
a heuristic algorithm for maximizing resource utilization in
parallel U-shaped assembly line balancing problem.

Boysen et al. (2008) defined the mixed model assembly
line as a varied sequential model of a standard product. Mod-
els may vary in terms of color, size, materials, equipment,
precedence, relationships of tasks, and task durations. There
are several common tasks with the same priority relationship
between different models on a mixed model assembly line.
This is used by Thomopoulos (1970) to considerably reduce
the number of variables and constraints in the model.

Matanachai & Yano (2001) offered a new approach to
balancing mixed model assembly lines and they focused on
the allocation of tasks to workstations by creating a daily se-
quence of customer orders. They introduced a new goal for
the mixed model assembly line balancing to achieve a stable
workload in the short term with a heuristic solution. In addi-
tion, they have assumed that the number of stations and the
cycle time is predetermined. Simaria & Vilarinho (2004) stat-
ed that, nowadays, the market is moving towards products
with more diversity. Thus, the mixed model assembly line is
preferable to the traditional single assembly line. Therefore,
they provided a mathematical programming model and an
iterative process based on genetic algorithm to the problem
of mixed model assembly line balancing with parallel work-
stations and the goal of maximizing the rate of production of
assembly line with a predetermined number of workstations.

Hamta et al. (2011) used lower and upper bounds for task
time and called this type flexible operation time. The paper
aimed to minimize the cycle time and minimize machine
total costs. Nima Hamta (2013) considered flexible opera-
tion times, sequence-dependent setup times, and learning
effects in a hybrid particle swarm optimization (PSO) algo-
rithm, minimizing the cycle time, minimizing the total equip-
ment cost, and minimizing the smoothness index. Assigning
operators and activities to the stations is an important is-
sue for balancing the assembly lines. Therefore, a model for
maximizing production rate and balancing workloads among
operators on the assembly line has been created by Purno-
mo and Wee (2014).

Ramezanian and Ezzatpanah (2015) proposed a model for
worker assignment problem. They assign workers to worksta-

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

257

tions with considered operating costs and their abilities to min-
imize cycle time and all the cost that are related to workers.
They used Imperialist competitive algorithm (ICA) for tackling
the problem, and the obtained results are compared with GA.

Many studies have assumed that a task needs a fix num-
ber of operators and machines; however, in real situations,
for reducing the time of tasks, extra resources can be used.
For this issue, a simulated annealing (SA) algorithm for solv-
ing a U-shaped assembly line balancing with resource de-
pendent task times was presented by Jayaswal and Agarwal
(2014). The best research on resource dependent u-shaped
assembly line balancing (RDULB), which assigns tasks to
workstations and minimizes total cost simultaneously, was
presented by Yakup Kara (2011).

Reducing the setup times to zero is one of the main issues
in lean manufacturing systems and makes to order environ-
ment. Zero setup time means there is no justification for
the use of large stacks and it is better to choose producing
batches one by one. Also, one of the important causes for
reduction in efficiency is the setup time. Thus, considering
an optimum sequencing for the tasks is necessary. Scholl et
al. (2013) proposed a heuristic algorithm for minimizing the
number of workstations with consideration of sequence-de-
pendent setup time for a single model assembly line bal-
ancing problem. Moreover, Nazarian (2010) and Kara (2007)
considered set up time in their studies for mixed model as-
sembly lines and showed the impact of sequence dependent
setup times to obtain the best sequence of tasks.

Repeating an activity over the time increases the speed of
operators and, considering the learning effect in ALBP, it cre-
ates conditions with dynamic task times. Biskup (1992) was
the first author that analyzed learning effect in single-ma-
chine scheduling problems and the objective functions are
minimize the deviation from a common due date and the
sum of flowtimes. Toksari, İşleyen (2008) and Nima Hamta
(2013) used a heuristic algorithm and they utilized Biskup’s
approach for considering learning effect into single model
assembly line balancing problems. Zhao et al. (2015) pro-
posed a GA that considers mental workload in mixed-mod-
el assembly line to maximize the production efficiency in
straight line and the Weibull distribution was used to de-
scribe the relationship between working performance and
mental workload.

Manavizadeh et al. (2013) presented a model for reduc-
ing the number of stations and maximizing the weighted
efficiency in U-shaped and mixed-model assembly line bal-
ancing problem using SA. Özcan et al. (2011) developed a
GA to solve the mixed-model U-line balancing and sequenc-
ing problem when considering stochastic task times. Table
1 summarizes some relevant studies in the literature and
highlights gaps between studies.

The present work proposes a new mathematical model
to minimize the cycle time and the total operating cost relat-
ed to resource dependent task times and smoothness index
with considering simultaneously flexible operation times, se-
quence-dependent setup times and learning effect in assem-
ble-to-order environment for two parallel lines, in which the
first one is a common line and the other, due to more mod-
ern technology or operators with higher skills, is an express
line. Therefore, the cost of equipment and skilled labor in the
express line is higher and, as a result, the price and product
quality is higher than the common line. However, in order to
respond more quickly to customers’ requirements, as well as
to have better control over costs and selling price, it is allowed
to consider these two lines together and in parallel shape.

3. PROBLEM DESCRIPTION

In this paper, a multi-objective model for solving the
MMALB problem is proposed when considering express par-
allel line, resource dependent task times, flexible operation
times, sequence-dependent setup times and learning effect
in assemble-to-order environment. In order to describe the
problem, the basic assumptions must be introduced. More-
over, a schematic figure of the proposed problem is shown
in Figure 1.

Assumption
• The models are homogeneous and all parts of the mod-

els are prepared for utilization in the assembly line.
• Some kinds of customers are interested to pay a

higher cost for reducing delivery time and this higher
payment allows the manufacturer to consider par-
ticular condition in this manufacturing opportunity.

• It is considered an express parallel line with higher
performance operator and higher speed (and quali-
ty) that is equipped by high-level machinery beside
the common (main) assembly line. Thus, the lead
time of express line is reduced.

• The workers are trained to perform any operation in
each line. Moreover, some tasks can be processed
with additional resources (equipment or assistant).

• We have lower bound and upper bound of
each operation task time.

• Task durations depend on the type of resource
(equipment type or assistant) used and using addi-
tional resources decreases the task duration.

• GALBP is studied using the learning curve described
by Biskup (1999), in which the learning effect is con-
sidered on the operation time of task i assigned to
position r by the following formulation:

• where α (= ≤ 0) is the learning effect
and s denotes the learning rate.

• The setup times are known and deterministic.
• Regular operators and assistants can move between

crossover workstations.

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

258

Figure 1. Distribution of entering materials
Source: The author(s)’ own

Li

Li

y1

y2

The sufficient number of regular operators is available to
operate the workstations, but other resources (equipment
and assistants) are limited.

Mathematical model

The multi-objective GALBP, considering express paral-
lel line, resource dependent task times, flexible operation
times and learning effect in assemble-to-order environment,
can be formulated as the following mixed integer nonlinear
programming model. Furthermore, in Figure 1 the distribu-
tion of materials that enter to the lines is described.

Notation Definition
Indices

i task index; i =1, 2, …, n
k workstation index; k =1, 2, …, m
j model index; j =1, 2, …, p
r sequence position index inside a workstation
l line index (L=2)

parameters

E set of all equipment types

set of equipment types that can be used to
process task i

NE number of equipment types; NE = |E|

number of equipment of type e available

NA number of assistants available
T subset of tasks that is common for all models
M a big number

probability of entering to line l

subset of immediate predecessors of task i

maximum number of tasks that can be as-
signed to any workstation

standard operation time of task i

lower bound of operation time of task i

upper bound of operation time of task i

time of workstation k

α learning effect

stochastic cycle time of line l

upper bound of cycle time in line l

setup time when task h is operated after task i
inside the same workstation

subset of all tasks of model j that could be
assigned to station k on line l

number of all tasks of model j that could be
assigned to station k on line l

TC total cost per piece in $/unit time

Cw
utilization cost of a workstation (regular opera-
tor + amortized investment costs) per piece in

$/unit time

Ca employment cost of an assistant per piece in $/
unit time

operating cost of equipment e in line l per
piece in $/unit time

duration of task i of model j on line l with a
learning effect if assigned to position r on

equipment e without an assistant
duration of task i of model j on line l with a
learning effect if assigned to position r on

equipment e with an assistant

Decision variables

1, if task i is processed at workstation j using
equipment e without an assistant; 0, otherwise

1, if task i is processed at workstation j using
equipment e and with the help of an assistant;

0, otherwise
1, if an assistant is assigned to workstation k; 0,

otherwise
1 if task i is assigned to r th sequence at work-

station k
1 if task i is operated immediately before task h
(i, h) at workstation k and line l in the same or

in the next cycle
1 if station k is utilized for model j on line l;

otherwise 0

1 if station k is utilized by all models on line l

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

259

Mathematical formulation

TC= (1)

The concept of total cost (TC) is utilized for reducing number of variables in the second objective.

Min (2)

Min
(3)

Min
(4)

Subject to:

 i, j, l (5)

 k, j, l (6)

 k, r, j, l (7)

k, r=1,2,…, -1 (8)

k, l, j (9)

k, l, j (10)

i, r, j, e; (11)

i, r, j, e; (12)

 k, l, j (13)

P. k, l (14)

M(1- - ≥0
j, k, l, r (15)

k (16)

 (17)

i (18)

i (19)

(20)

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

260

Equations (2)-(4) are the objective functions. While ob-
jective function (2) minimizes the average of cycle time for
two lines, equation (3) minimizes the total cost and relation
(4) minimizes the smoothness index. Constraints (5) implies
that each task of each model can be assigned in only one
sequence position in only one workstation in each line. Con-
straints (6) and (7) ensure that each workstation is assigned
by, at least, one task and each sequence position inside each
workstation will have at most one assigned task. Constraints
(8) state that, for assigning tasks in sequencing each work-
station, the ascending order of positions should be noticed.
(9) is the cycle time constraints that states that the sum of
operation times when considering learning effect and set-
up times in each workstation should not exceed the Upper
bound cycle time of line l. Constraint (10) computes the time
of workstation k. Constraints (11) and (12) determine the
operation time of task i when considering the effect of learn-
ing if task i assigned to position r, where α is a learning index.

Constraints (13) and (14) guarantee the utilization of all
the stations for all models and, if a station is not utilized for
one model, it should not be used for other models. These
constraints are presented by Gökċen and Erel (1998). Con-
straints (15) are used to assign common tasks of models to
the same station on each line. Constraints (16) state that
an assistant cannot operate a task at a workstation unless
one is assigned to that workstation. Constraints (17) are the
assistant availability constraints. Constraints (18) guarantee
that operation times must be between given lower and up-
per bounds. Constraints (19) denote the state of the lower
bounds of operation times. Constraint (20) considers binary
variables.

4. METHODOLOGY

Two solution algorithms have been applied to detect ra-
tional Pareto solutions. This section examines the details of
these two proposed methods for solving a mathematical
model. The first method is non-dominated sorting genetic
algorithm (NSGA-II) and another is multi-objective particle
swarm optimization algorithm (MOPSO). These two meth-
ods have been used in many studies and they are well-
known as an efficient method among researchers (Ghodrat-
nama et al., 2015).

4.1. Chromosome representation

In this study, for resolving the problem, the number of
components in each chromosome is equal to a given num-
ber of models and assembly lines. It should be noted that
each chromosome associates with one solution in solutions
space. Each component has two rows and the length of
matrix is defined by the number of tasks. The first row rep-
resents the assignment of tasks to station and the second
row shows the priority of tasks. A sample matrix for the first
model, first line, and five tasks are shown in Figure 2. In this
problem, if we have J model then we should have 2J matri-
ces in each solution because of the existence of two parallel
lines and each matrix consists of two rows. For example, this
matrix states that the tasks number 1 and 2 are done by first
and second stations, respectively, and task 3, 4 and 5 are
done by the third station, respectively.

4.2. NSGA-II algorithm

Srinivas & Deb (1994) proposed NSGA-II for solving
multi-objective problem for the first time. The main differ-
ence between the algorithm of this method and GA is the
way of selecting the members of a new population. NSGA-II
uses the fast-non-dominated sorting approach to rank the
whole population and, when it is not possible to compare
ranks, it uses a crowding distance for comparing and select-
ing the population fronts. In the following subsections, the
steps of NSGA-II algorithm are presented in detail.

4.2.1. Generating the initial population

Generating the initial population () in size of N is the
first step of this algorithm and all individuals of employed
non-dominated sorting and crowding distance procedure for
ranking the members of the population.

In this study, the assignment of stations to the tasks for
each line and each model can be specified by the following
construction algorithm to initialize the population. The steps
of construction algorithm to generate the initial population
are as follows:

• Step 1: Assign station 1 to the task 1.

Figure 2. Chromosome representation
Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

261

• Step 2: Input the immediate follower of assigned
tasks to command list.

• Step 3: Assign station 1 to the task with more prior-
ity and check the Ei and Li constraints for feasibility.
If these constraints are not feasible, assign the next
priority.

• Step 4: Control the time of the stations that is not
exceeded by the task duration time that is assigned
in them. If it is exceeded, open the new station and
go back to step 2 else; if it is less, go back to step
2 and, according to the task times and their prece-
dence relations, if possible, assign the other task in
the same station.

• Step 5. Make iteration to assign all tasks to stations.

4.2.2. Rank calculation for solutions

When none of objective functions dominate each other
and we could not choose the best solution, the non-dom-
inated is ranked between the solutions done and is com-
pared to any rate in one of the objective functions that is
better than the others. According to Deb et al. (2002), the
non-dominated sorting algorithm is described in Figure 3.

For each p P
= {}, =0

 If p dominate q

 add q in
 Else

 add 1 in
Assign all members of population that have in the first
pareto-front
* For i=1: k

 While
 Q= 0

 For each p

 For each q

 If
 add q to Q= {}
 If Q=
 End
 Else if Q≠

 Q=
i=i+1 and go to step*

Figure 3. Non-dominated sorting algorithm
Source: The author(s)’ own

4.2.3. Crowding distance

According to Deb et al. (2002), an important attribute of
NSGA-II that differs this algorithm from others is crowding
distance. It determines the relation of individuals with their
neighbor in terms of their distance from each other. The
summaries of finding crowding distance are as follow: is
an objective function and is distance.

(23)

(24)

4.2.4. Parent selection

Binary-tournament selection is applied to select parents.
First, two random solutions from the population should be
specified. If they have different rank, the solution with lower
rank will be chosen; or else, the solution with higher crowd-
ing distance will be selected.

4.2.5. Crossover

After selecting parents, the crossover operator is used
to create two offsprings by combining the two parents and
then these two children are added to the offspring popula-
tion. This operator firstly produces an integer random num-
ber between one and the length of chromosomes. Then the
right part of chromosomes of the first parent is transferred
to the right side of the chromosomes of the second parent
or the left side of the chromosome of the second parent is
transferred to the left side of the chromosome of the first
parent. The crossover operator is shown in Figure 4.

 Parent1 Parent2 Child1 Child2

(:,:,1,
1)

1 2 3 3 3 1 1 2 3 3 1 2 2 3 3 1 1 3 3 3

 1 1 1 2 3 1 2 1 1 2 1 1 1 1 2 1 2 1 2 3

(:,:,2,
1)

1 2 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 2 3 3

 1 1 2 1 2 1 1 1 2 3 1 1 1 2 3 1 1 2 1 2

(:,:,1,
2)

1 1 2 3 3 1 2 2 3 3 1 1 2 3 3 1 2 2 3 3

 1 2 1 1 2 1 1 2 1 2 1 2 2 1 2 1 1 1 1 2

(:,:,2,
2)

1 2 3 3 3 1 2 2 3 3 1 2 2 3 3 1 2 3 3 3

 1 1 1 2 3 1 1 2 1 2 1 1 2 1 2 1 1 1 2 3

Figure 4. Crossover procedure
Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

262

4.2.6. Mutation

Another operator is the mutation operator, which gener-
ates another possible solution. As it is shown in Figure 5, in
this algorithm, after developing a new individual, each gene
with the mutation probability will be transformed. When
the mutation occurs, maybe a gene is removed from the
set of genes or it may be the gene that has ever existed in
the population added to this set. The mutation of a gene
means that the gene changes and, depending on the type of
coding, mutations are used in different ways. In this study,
for each model (j) and line (l) in each chromosome matrix
whose probability is lower than , two random numbers are
generated for task (i) and swapping them with each other.

At last, after generating the children by crossover and
mutation, it is necessary to control the feasibility of con-
straints for each chromosome (as earlier or latest time of

station constrains or precedence constrains of tasks) and
repair them.

 Before mutation After mutation

p(:,:,1,1)<=! 1 2 3 3 3 1 3 3 2 3
 1 1 1 2 3 1 2 1 1 3

p(:,:,2,1)>"! 1 2 2 3 3 1 2 2 3 3
 1 1 2 1 2 1 1 2 1 2

p(:,:,1,2)>"! 1 1 2 3 3 1 1 2 3 3
 1 2 1 1 2 1 2 1 1 2

p(:,:,2,2)<= 1 2 3 3 3 1 2 3 3 3

Figure 5. Mutation procedure
Source: The author(s)’ own

4.2.7. Generating New population

By combining the population and children , a combined
population, (), in size 2N will be generated (i.e., () = {()
()}).

The procedure is continued with a non-dominated sort-
ing of combined population to obtain the Pareto fronts and
estimation of crowded distance of solutions in each front.
The next parent population (() +1), in size N, is formed by
selecting the best individuals, according to their rank and
crowded distance. The algorithm is terminated after per-
forming a constant number of generations. The algorithm of
NSGA-II is described in Figure 6.

4.3. Multi-objective particle swarm optimization

Particle swarm optimization is one of the newest evo-
lutionary optimization techniques that was developed by
Eberhart and Kennedy (1995) for the first time. The basic
idea of PSO derived from the social behavior of a group of
birds. Since the use of this algorithm requires only a series
of elementary arithmetic operators, the implementation of
this algorithm is simple and economical in terms of costs.

Multi-objective particle swarm optimization algorithm
(MOPSO) was introduced by Coello et al. (2004). It is an ex-
tension of PSO algorithm and it is used for solving multi-ob-
jective problems. Because of the existence of multi objective
in MOPSO, a concept called archive or repository is added in
MOPSO compared to PSO, whose member of the repository

start

Generate the initial population
of size N (Pt)

Use Non-Dominated Sorting and Crowding
distance to classify population (Pt)

Employ Binary Tournament selection to
select parents and generate the offspring
by applying crossover and mutation (Qt)

Combine both population Pt and Qt to
create new population Pt+1 in size 2N

Calculate the value of
objective functions

Dose population
need to be sort?

Yes

No

Iteration=1

Is maximum
iteration
reached?

Iteration+1

No

Yes

end

Select population of
size N

Figure 6. Flowchart of NSGA-II algorithm
Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

263

Start

Generate the initial population
with random velocity and

position

Separate non-dominated
particles of the population and

save them in a repository

Convert the search space that is
explored by particles so far to a

grid

Each particle applying roulette-wheel
selection approach to choose a leader

from members of repository

Use equation 23 and 24 to
compute new velocity and new

position of each particle

Perform mutation
in the swarms

Add new non-dominated particles to repository and
remove the dominated members and if the number of

members of repository exceed from the specified
capacity, remove the additional members

Update the grid by
considering new

population

Update the best memory
of each particles

Is maximum
generation

riched?

Get out of
repository

end

Yes

No

Figure 7. Flowchart of MOPSO algorithm
Source: The author(s)’ own

represents Pareto Front and its particles are non-dominated.
The most important and essential step for each particle is
choosing the best answer from global best (Gbest) answer
and the best personal recollection. Thus, in MOPSO against
PSO, there is set of non-dominated particles; therefore, one
member of repository is chosen as a leader and the new ve-
locity and position of each particle is computed by the em-
ploying equation 25 and 26 that is presented below:

(25)

= +VEL(i+1) (26)

Where w is called inertia weight that is responsible for
controlling the impact of the past velocity of each particle
on the current one. and are called cognitive and social
positive parameters, respectively. is the best mem-
ory of particle i and is the value of leader member
in hyper cubes h that has more particles than other hyper
cubes.

For comparing the best vector of personal recollection,
use the following syntax:

• If the new position dominates the best memory,
then the new location is the best memory.

• If the new position is dominated by the best memo-
ry, then do nothing.

• If none of them beat each other, consider one of the
best positions as leader.

In the following, the algorithm of MOPSO is described in
Figure 7.

5. EXPERIMENTAL RESULTS

In this section, the proposed NSGA-II and MOPSO are
compared with each other and the results are analyzed.
MATLAB R2012a on Intel CORE i5 2.40 GHz personal com-
puter with 4 GB RAM is used for coding the algorithms.

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

264

5.1 Parameters tuning

For obtaining the tuned value of each parameter of algo-
rithms, the Taguchi design of experiment on MINITAB 17 is
applied, based on the number of Pareto solution.

For optimizing the proposed algorithm parameters, some
designed set of experiments prefer the Taguchi method
(2005) that has considerable effect on improving the qual-
ity of the algorithm. Actually, this method assigns a set of
experiments with different values of the parameters to min-
imize the effect of some causes that could affect the results
by producing variation in them.

In the first phase, this method was concerned with the
identification of the parameters that could affect the results
and a certain level for each value of the parameter is as-
signed to them. For example, in the NSGA-II algorithm, the
number of population, maximum number of iteration, cross-
over and mutation parameters and in the MOPSO algorithm,
the number of population, maximum number of iteration,
number of repository, cognitive and social positive parame-
ters, and inertia weight might influence the results.

Figure 8-9 and Table 2 indicate the result of the analysis of
Taguchi Design and the tuned value of each parameter with
their different levels for the proposed NSGA-II and MOPSO al-
gorithms. In this study, three levels for each parameter are con-
sidered and, for each level, five numbers of experiments are
performed. The current set of experiments is used to test 25 ex-
periments containing three levels and five different parameters.

5.2 Test problems

Two section including small and large problems are con-
sidered to implement the experimental results. In this paper
a set of eight MMALBP instances, including five small sized
and three large sized problems, are considered to calculate
the objectives by using the NSGA-II and MOPSO algorithms.
In this section, the forth example from small instances and
the second example from large size instances are explained.
The information of these two problems involving prece-
dence diagrams, task dependent setup times, cost of equip-
ment in each line, cost of workstation and assistant, and the
probability of entering to each line are in appendix, and the
information about their task times and other instances are
available in https://goo.gl/Yu1nIE.

The information of parameters that is used in examples 1
and 2 is shown in Table 3 and the Pareto result of two algo-
rithms for both examples are shown in Table 4-5 and Table
7-8. Moreover, in Figure 10-13 the Pareto front of NSGA-II
and MOPSO for both examples are shown. The reply of solu-
tions 15 and 18 of NSGA-II for both examples are shown in
Table 6 and Table 9, respectively. For example, the result in
Table 6 indicates that, in line 1 and station 1 for task 1, one
assistant should be assigned for model 1.

5.3 Comparison metrics

It is necessary to evaluate the quality of the generated
Pareto fronts’ solutions for comparing two algorithms. There
are different measures for comparing different algorithms.

907050

85

80

75

70

65

60

55

907050 0.70.50.3 0.70.50.3

npop

M
ea

n
of

 M
ea

ns

maxit pc pm

Main Effects Plot for Means
Data Means

Figure 8. The result of Taguchi design for the NSGA-II algorithm

Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

265

In this paper, four popular performances’ metrics, including
number of Pareto, diversity, spacing, and mean ideal dis-
tance (MID) is considered to indicate the efficient algorithm
between NSGA-II and MOPSO for this problem. In the fol-
lowing, these four measures are explained:

Number of Pareto front: by using this measure we could
recognize the ability of algorithms to discover an efficient
solution.

Diversity: it indicates the extension of non-dominated
solutions and it computes as follow:

 (27)

Where are the non-dominated solutions,
 is the Euclidean distance between them,

and n is the number of non-dominated solutions (Knowles
and Corne, 2002).

• Spacing: this metric measures the distribution of the
Pareto front solutions by computing the distance
variance of the neighboring solution in the Pareto
front.

(28)

 i, j =1, 2, …, n (29)

Where m is the number of objectives, n is the number of
non-dominated solutions, and is the mean value of all .
The less SM for each Pareto front solution means the more
efficient solution.

• mean ideal distance: this metric indicates the sum
of the distance of solutions from the ideal point of
Pareto that computed as follows:

(30)

Where is the maximum value of the objective func-
tion, and are the ideal points. Smaller MID
value is more preferred.

Table10 summarizes the result of each measure for five
small and three large size instances. According to this table,
generally, the performance of MOPSO, such as more num-
ber of Pareto solution and diversity, is better in comparison
with NSGA-II. The value for mean ideal distance and spacing
in most instances in MOPSO is smaller than NSGA-II.

6. CONCLUSION

In order to respond quickly to customer demands by con-
sidering affordable prices and their satisfaction, production
and assembly systems need to have a schedule and a plan
for balancing the lines. Thus, they can reduce costs and in-
crease quality and efficiency, and also, by the effective cost,
they can respond to all requests. In this study, the NSGA II
and MOPSO algorithms were applied to solve a mathemat-
ical model of balancing mixed-model assembly lines when
considering an express parallel line to respond the orders
quickly and the learning effect on resource dependent task
times and setup times in assemble-to-order environment.
The aim of this study was to minimize the cycle time, the
total operating cost, and the smoothness index simultane-

907050

80

75

70

65

60
150120100 907050 2.01.50.5 2.01.50.5 1.00.70.3

npop
M

ea
n

of
 M

ea
ns

nrep maxit c1 c2 w

Main Effects Plot for Means
Data Means

Figure 9: The result of Taguchi design for the MOPSO algorithm
Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

266

Figure 10. The Pareto front of NSGA-II for example 1
Source: The author(s)’ own

Figure 11. The Pareto front of MOPSO for example 1
Source: The author(s)’ own

Figure 12. The Pareto front of NSGA-II for example 2
Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

267

ously, by configuring tasks in stations, according to their pre-
cedence diagrams and also to assign the assistants to some
tasks in some stations and for some models that optimize
the objectives. The costs that are considered in this objec-
tive are costs of equipment on each line, cost of workstation,
and cost of assigning an assistant to tasks. Therefore, it is
rational to assign an assistant to some tasks to accelerate
the implementation operations and minimize the cycle time.

For recognizing the efficiency of NSGA-II and MOPSO,
eight numerical examples in small and large size problems
were applied and the result is indicated in the Pareto solu-
tion of two examples in the context. Finally, we concluded
that gaining the best position of tasks for each model, con-
sidering minimizing these three objectives, is possible as
well as the result of comparing these two algorithms repre-
sent the highest number of Pareto front solution and diver-
sity in MOPSO, compared with NSGA-II in all instances and
better performance of MOPSO according to the spacing and
MID metrics in the majority of instances.

The result of such studies could help the managers to in-
crease their customers and the speed of response of their
variable demand and minimize the total cost of systems si-
multaneously. For future research, using this constraint in
parallel with the U-shaped assembly line or other configura-
tion of lines, also considering uncertainty in task times and
equipment reliability, could be effective.

REFERENCES

Bard, J. F. (1989), “Assembly line balancing with parallel
workstations and dead time”, The International Journal of
Production Research, Vol. 27, pp. 1005-18.

Baybars, I. (1986), “A survey of exact algorithms for the
simple assembly line balancing problem”, Management Scien-
ce, Vol. 32, 909-932.

Becker, C.; Scholl, A. (2006), “A survey on problems and
methods in generalized assembly line balancing”, European
Journal Of Operational Research, Vol.168, pp. 694-715.

Benzer, R. et al. (2007), “A network model for parallel line
balancing problem”, Mathematical Problems in Engineering.

Biskup, D. (1999), “Single-machine scheduling with lear-
ning considerations”, European Journal of Operational Re-
search, Vol. 115, pp. 173-8.

Boysen, N. et al. (2007), “A classification of assembly line
balancing problems”, European Journal of Operational Re-
search, Vol. 183, pp. 674-93.

Boysen, N. et al. (2008), “Assembly line balancing: Which
model to use when?”, International Journal of Production Eco-
nomics, Vol. 111, pp. 509-28.

Bukchin, J.; Rubinovitz, J. (2003), “A weighted approach
for assembly line design with station paralleling and equip-
ment selection”, IIE Transactions, Vol. 35, pp. 73-85.

Cakir, B. et al. (2011), “Multi-objective optimization of a
stochastic assembly line balancing: A hybrid simulated annea-
ling algorithm”, Computers & Industrial Engineering, Vol. 60,
pp. 376-84.

Coello, C. A. C. et al. (2004), “Handling multiple objectives
with particle swarm optimization”, Evolutionary Computation,
IEEE Transactions on, Vol. 8, pp. 256-79.

Deb, K. et al. (2002), “A fast and elitist multiobjective gene-
tic algorithm: NSGA-II.”, Evolutionary Computation, IEEE Tran-
sactions on, Vol. 6, pp. 182-97.

Figure 13. the Pareto front of MOPSO for example 2
Source: The author(s)’ own

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269
DOI: 10.14488/BJOPM.2018.v15.n2.a8

268

Eberhart, R. C.; Kennedy, J. (1995), “A new optimizer using
particle swarm theory. Proceedings of the sixth internatio-
nal symposium on micro machine and human science”, in:
Sixth International Symposium onMicro Machine and Human
Science, New York, NY, 1995, pp. 39-43.

Erel, E.; Sarin, S. C. (1998), “A survey of the assembly line
balancing procedures”, Production Planning & Control, Vol. 9,
pp. 414-34.

Ghodratnama, A. et al. (2015), “Solving a new multi-objec-
tive multi-route flexible flow line problem by multi-objective
particle swarm optimization and NSGA-II”, Journal of Manu-
facturing Systems, Vol. 36, pp. 189-202.

Ghosh, S.; Gagnon, R. J. (1989), “A comprehensive literatu-
re review and analysis of the design, balancing and scheduling
of assembly systems”, The International Journal of Production
Research, Vol. 27, pp. 637-70.

Gökçen, H., Ağpak, K.; Benzer, R. (2006), “Balancing of pa-
rallel assembly lines”, International Journal of Production Eco-
nomics, Vol. 103, pp. 600-9.

Gökċen, H.; Erel, E. (1998), “Binary integer formulation for
mixed-model assembly line balancing problem”, Computers &
Industrial Engineering, Vol. 34, pp. 451-61.

Hamta, N. et al. (2011), “Bi-criteria assembly line balancing
by considering flexible operation times”, Applied Mathemati-
cal Modelling, Vol. 35, pp. 5592-608.

Hamta, N. et al. (2013), “A hybrid PSO algorithm for a multi-
-objective assembly line balancing problem with flexible ope-
ration times, sequence-dependent setup times and learning
effect”, International Journal of Production Economics, Vol.
141, pp. 99–111.

Jayaswal, S.; Agarwal, P. (2014), “Balancing U-shaped as-
sembly lines with resource dependent task times: A Simulated
Annealing approach”, Journal of Manufacturing Systems, Vol.
33, pp. 522-34.

Knowles, J.; Corne, D. (2002), “On metrics for compa-
ring nondominated sets. Evolutionary Computation, 2002.
CEC’02”, proceedings of the 2002 Congress on, 2002, IEEE,
pp.711-16.

Kucukkoc, I.; Zhang, D. Z. (2015), “Balancing of parallel U-
-shaped assembly lines”, Computers & Operations Research,
Vol. 64, pp. 233-44.

Manavizadeh, N. et al. (2013), “A Simulated Annealing al-
gorithm for a mixed model assembly U-line balancing type-
-I problem considering human efficiency and Just-In-Time
approach”, Computers & Industrial Engineering, Vol. 64, pp.
669-85.

Michalos, G. et al. (2010), “Dynamic job rotation for
workload balancing in human based assembly systems”, CIRP
Journal of Manufacturing Science and Technology, Vol.2, pp.
153-60.

Nearchou, A. C. (2008), “Multi-objective balancing of as-
sembly lines by population heuristics”, International Journal
of Production Research, Vol. 46, pp. 2275-97.

Ozbakir, L. et al. (2011), “Multiple-colony ant algorithm for
parallel assembly line balancing problem”, Applied Soft Com-
puting, Vol. 11, pp. 3186-98.

Özcan, U. et al. (2011), “A genetic algorithm for the sto-
chastic mixed-model U-line balancing and sequencing pro-
blem”, International Journal of Production Research, Vol. 49,
pp. 1605-26.

Ponnambalam, S. et al. (2000), “A multi-objective genetic
algorithm for solving assembly line balancing problem”, The
International Journal of Advanced Manufacturing Technology,
Vol. 16, pp. 341-52.

Purnomo, H. D.; Wee, H. M. (2014), “Maximizing produc-
tion rate and workload balancing in a two-sided assembly line
using Harmony Search”, Computers & Industrial Engineering,
Vol. 76, pp. 222-30.

Rabbani, M. et al. (2014), “Mixed-model assembly line ba-
lancing in assemble-to-order environment with considering
express parallel line: problem definition and solution proce-
dure”, International Journal of Computer Integrated Manufac-
turing, Vol. 27, pp. 690-706.

Ramezanian, R. & Ezzatpanah, A. (2015), “Modeling and
solving multi-objective mixed-model assembly line balancing
and worker assignment problem”, Computers & Industrial En-
gineering, Vol. 87, pp. 74-80.

Requena, O. P. (2013), The Time and Space Assembly Line
Balancing Problem: modelling two new space features, Mas-
ter thesis in Industrial Engineering, Universiteit Gent, Gent,
Belgium.

Salveson, M. E. (1955), “The assembly line balancing pro-
blem”, Journal of industrial engineering, Vol. 6, pp. 18-25.

Scholl, A. et al. (2013), “The assembly line balancing and
scheduling problem with sequence-dependent setup times:
problem extension, model formulation and efficient heuris-
tics”, OR Spectrum, pp. 1-30.

Scholl, A.; Boysen, N. (2009), “Designing parallel assembly
lines with split workplaces: Model and optimization procedu-
re”, International Journal of Production Economics, Vol. 119,
pp. 90-100.

Scholl, A.; Voß, S. (1997), “Simple assembly line balan-
cing—Heuristic approaches”, Journal of Heuristics, Vol. 2, pp.
217-44.

Süer, G. A. (1998), “Designing parallel assembly lines”,
Computers & industrial Engineering, Vol. 35, pp. 467-70.

Thomopoulos, N. T. (1970), “Mixed model line balancing
with smoothed station assignments”, Management Science,
Vol. 16, pp. 593-603.

Brazilian Journal of Operations & Production Management
Volume 15, Número 2, 2018, pp. 254-269

DOI: 10.14488/BJOPM.2018.v15.n2.a8

269

Tiacci, L. (2015), “Simultaneous balancing and buffer allo-
cation decisions for the design of mixed-model assembly lines
with parallel workstations and stochastic task times”, Interna-
tional Journal of Production Economics, Vol. 162, pp. 201–15.

Wilhelm, W. E. (1999), “A column-generation approach for
the assembly system design problem with tool changes”, In-
ternational Journal of Flexible Manufacturing Systems, Vol.
11, pp. 177-205.

Yakup Kara , C. Ö. et al. (2011), “Balancing straight and U-
-shaped assembly lines with resource dependent task times”,
International Journal of Production Research, Vol. 49, pp.
6387–405.

Zhao, X. et al. (2016), “A genetic algorithm for the multi-
-objective optimization of mixed-model assembly line based
on the mental workload”, Engineering Applications of Artifi-
cial Intelligence, Vol. 47, pp. 140-46.

Received: 12 Jan 2017

Approved: 08 May 2018

DOI: 10.14488/BJOPM.2018.v15.n2.a8

How to cite: Rabbani, M., Alipour, F., Farrokhi-Asl, H. et al. (2018), “Using metaheuristic algorithms for solving
a mixed model assembly line balancing problem considering express parallel line and learning effect”, Brazilian
Journal of Operations & Production Management, Vol. 15, No. 2, pp. 254-269, available from: https://bjopm.
emnuvens.com.br/bjopm/article/view/414 (access year month day).

Appendix

1 2 3

4

5

Figure 14. precedence diagram of example 1

1 2 3 4

5

6 7

8

9 10

Figure 15. precedence diagram of example 2

