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USING METAHEURISTIC ALGORITHMS FOR SOLVING A MIXED MODEL ASSEMBLY LINE 
BALANCING PROBLEM CONSIDERING EXPRESS PARALLEL LINE AND LEARNING EFFECT

ABSTRACT
Mixed-model assembly line attracts many manufacturing centers’ attentions, 

since it enables them to manufacture different models of one product in the same line. 
The present work proposes a new mathematical model to balancing mixed-model assem-
bly two parallel lines, in which first one is a common line and the other is an express line 
due to more modern technology or operators with higher skills. Therefore, the cost of 
equipment and skilled labor in the express line is higher, and also, the learning effect on 
resource dependent task times and setup times is considered in the assemble-to-order 
environment. The aim of this study is to minimize the cycle time and the total operating 
cost and smoothness index by configuration of tasks in stations, according to their pre-
cedence diagrams. Also, assigning the assistants to some tasks in some stations and for 
some models is allowed. This problem is categorized as an NP-hard problem and for solv-
ing this multi-objective problem, non-dominated sorting genetic algorithm ІІ (NSGA-II) 
and multi-objective particle swarm optimization (MOPSO) are applied. Finally, for com-
paring the proposed methods some numerical examples are implemented and the result 
show that MOPSO outperforms NSGAII.
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1. INTRODUCTION 

In modern manufacturing systems, flexibility in product 
mix is a common problem to satisfy in a cost-effective man-
ner when there are various customized demands. Moreover, 
because of the existing competitive environment for pro-
ducers, the mixed-model assembly line attracts many manu-
facturing centers’ attentions that can manufacture different 
models of one product in same line. In assembly lines, bal-
ancing and sequencing are two main issues. Due to the in-
creasing trend towards using the mixed model assembly line 
and the instability of market demand, these two issues have 
been taken into consideration by many researchers over 
the past two decades (Ramezanian and Ezzatpanah, 2015). 
Salveson (1955) published the first study in the assembly 
line balancing problem (ALBP). The main purpose of ALBP 
is to assign a limited set of tasks to workstations regarding 
the confirmation of precedence relations and to optimize 
some effectiveness measures, such as cycle time, number 
of workstations, line efficiency, or idle time (Erel and Sarin, 
1998). Following the classification, Boysen et al. (2007) stat-
ed that ALBP can be classified into three groups, according 
to the number of models: single-model ALBP, whose only 
product is produced in the lines; multi-model ALBP different 
products are produced in batches; and mixed-model ALBP, 
varying models of one product are assembled on the same 
assembly processes. Reduction in investment production, 
risks of uncertainty environment and cost of equipment and 
also quick response to the different requirements are some 
of the advantages of the mixed model assembly lines (Erel, 
1998, McMullen, 1997, Miltenburg, 2002).

For simplifying this problem, in simple assembly line bal-
ancing problems (SALBP), some assumptions are assumed. 
Until now these assumptions have been used in many stud-
ies (Baybars, 1986; Cakir et al., 2011; Michalos et al., 2010). 
In the sequence, these assumptions are discussed:

1)  Considering mass production of the same model 
with a definite process

2)  There is no substitute for processes.
3)  Considering paced line with constant cycle time C
4)  Locating is linearly performed with m unilateral sta-

tion and without any feeding lines or parallel lines.
5)  The only limitation is prerequisite for the allocation 

of activities.
6)  The duration time of activities is definitive.
7)  An activity could not be divided in two separate sta-

tions.
8)  All stations are equipped with the machinery and 

employees in the same way.

By changing variables, the different models of SALBP are 
obtained. In the following four main models for SALBP are 
described. 

When the cycle time value is given and the aim of the 
problem is minimizing the number of station, the model of 
SALBP is type 1 (SALBP-1) and when the station number is 
given and the aim of the problem is to minimize the cycle 
time value, the problem is type 2 (SALBP-2). 

When both of them are unknown variables and the aim 
of problem is to minimize the number of stations and cycle 
time simultaneously, considering the maximum efficiency, 
the model is converted to a simple assembly line, balancing 
problem, considering efficiency (SALBP-E). 

Simple assembly line balancing feasibility problem 
(SALBP-F) is an NP-complete problem that, given both the 
number of station and the cycle time values, the feasibility of 
the problem is checked and a feasible solution is discovered. 
Thus, this method deals with the SALBP as a NP-hard prob-
lem (Rabbani et al., 2014). Therefore, by eliminating some 
simplified assumptions and adding up some constraint the 
SALBP addresses generalized assembly line balancing prob-
lem (GALBP) that is a more realistic model. In the following, 
the assumption of GALBP is discussed:

1) It is possible to produce more than one type of prod-
uct.

2) A set of different alternative processes can be con-
sidered.

3) It is possible to plan the production line in such a 
way that it satisfies the amount of the target produc-
tion in a certain planning horizon and this planning 
can be obtained by considering the cycle time aver-
age in computations.

4) Considering unidirectional flow line.
5) The sequence of activities follows the precedence 

limitations.
6) The 5 to 7 assumptions of SALBP are given up.

Mixed-model assembly line balancing (MMALB) is one 
of the GALBP problem that has greater flexibility than the 
single-model and the multi-model (Palau Requena, 2013). 
Generally, MMALBP-1, MMALBP-2 and MMALBP-E are 
three types of problems which are faced in the literature of 
MMALBP. The main purpose in MMALBP-1 (MMALBP-2) is to 
minimize the number of workstations (cycle time) for a given 
cycle time (number of workstations) and to utilize combined 
precedence diagram that converts all of the precedence di-
agrams into one diagram that has permissible orderings of 
the tasks for the M models (Gökċen and Erel, 1998). Consid-
ering flexible resource dependent operation times in assem-
bling various models, MMALBP-2 seems to be more suitable 
for this problem.

Most of the research focused on the ‘operation’ time, 
which is the time of net value-adding processes, assumed 
that the task order has no effect on the inter-task times. 
However, in many real situations the task sequences re-
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markably affect the inter-task times (Scholl and Voß, 1997). 
Due to the importance of this issue in the system design, 
recently a few studies considered the sequence dependent 
setup times in a single model assembly line balancing prob-
lem (Scholl, 2008; Andres, 2008; Özcan, 2010). Nowadays, 
by increasing the variety requirement of customers and 
considering the mixed model assembly lines in production 
systems, the inter-task times attract more attention due to 
the main effect of switching time between different models 
on line performance that include setup change (Wilhelm, 
1999). The remainder of this paper is structured as follows: 
a review of literature is described in section 2. A problem 
description and its mathematical formulation are given in 
Section 3. The solution procedures are presented in Section 
4. Numerical examples are presented in Section 5. Finally, 
the conclusion of the article is provided in Section 6.

2. LİTERATURE REVİEW

There are many researches on the ALBP in the literature 
(Becker and Scholl, 2006;Boysen et al., 2007; Boysen et al., 
2008; Ghosh and Gagnon, 1989). Some well-known objective 
functions in ALBP are minimizing the number of workstations, 
minimizing the cycle time, maximizing the line efficiency 
(Boysen et al., 2007), maximizing workload smoothness (Ne-
archou, 2008), minimizing the smoothness index presented 
by Ponnambalam et al. (2000), and minimizing the total cost 
(Jayaswal and Agarwal, 2014; Tiacci, 2015).

Due to many advantages, such as ease of balance work-
load between stations, increased reliability, more flexibility in 
scheduling, worker satisfaction, a parallel arrangement of lines 
that provides further improvements in terms of flexibility, and 
sensitivity to fail was used. Therefore, the use of parallel mixed 
model assembly lines is improving system performance and in-
creasing productivity (Süer, 1998). Süer (1998) was the first au-
thor to consider parallel assembly lines very limited, as well as 
studies on single model parallel assembly lines balancing have 
reported the same, as in the case of Benzer et al. (2007), Scholl 
and Boysen (2009), and Gökçen et al. (2006), and he defined a 
problem in designing parallel assembly lines when the number 
of productions is too high and there are more workers required 
and the objective is to find out the number of assembly lines 
that minimizes total manpower.

Reducing the number of workstations, and subsequent-
ly, reducing the idle time, and reducing the cycle time and 
achieving high production rates are the other advantages 
that could be achieved by using parallel assembly lines (Buk-
chin and Rubinovitz, 2003, BARD, 1989).

Gökçen et al. (2006) examined the balancing of the par-
allel assembly lines. Scholl and Boysen (2009) proposed a 
model for designing parallel assembly lines with split work-
places and they indicated that increased productivity can be 

combined with the adjacent stations and also the objective 
function is to minimize the work space and the number of 
operators. Ozbakir et al. (2011) presented one of the first 
attempts in terms of modeling and solving the parallel as-
sembly line balancing problem wherein they used swarm-in-
telligence-based metaheuristics. Rabbani et al. (2014) used 
genetic algorithm (GA) to solve MMALB, considering express 
parallel line that works faster and produces similar mixed 
products, and also they considered different alternatives 
for selling products. Kucukkoc and Zhang (2015) developed 
a heuristic algorithm for maximizing resource utilization in 
parallel U-shaped assembly line balancing problem. 

Boysen et al. (2008) defined the mixed model assembly 
line as a varied sequential model of a standard product. Mod-
els may vary in terms of color, size, materials, equipment, 
precedence, relationships of tasks, and task durations. There 
are several common tasks with the same priority relationship 
between different models on a mixed model assembly line. 
This is used by Thomopoulos (1970) to considerably reduce 
the number of variables and constraints in the model.

Matanachai & Yano (2001) offered a new approach to 
balancing mixed model assembly lines and they focused on 
the allocation of tasks to workstations by creating a daily se-
quence of customer orders. They introduced a new goal for 
the mixed model assembly line balancing to achieve a stable 
workload in the short term with a heuristic solution. In addi-
tion, they have assumed that the number of stations and the 
cycle time is predetermined. Simaria & Vilarinho (2004) stat-
ed that, nowadays, the market is moving towards products 
with more diversity. Thus, the mixed model assembly line is 
preferable to the traditional single assembly line. Therefore, 
they provided a mathematical programming model and an 
iterative process based on genetic algorithm to the problem 
of mixed model assembly line balancing with parallel work-
stations and the goal of maximizing the rate of production of 
assembly line with a predetermined number of workstations. 

Hamta et al. (2011) used lower and upper bounds for task 
time and called this type flexible operation time. The paper 
aimed to minimize the cycle time and minimize machine 
total costs. Nima Hamta (2013) considered flexible opera-
tion times, sequence-dependent setup times, and learning 
effects in a hybrid particle swarm optimization (PSO) algo-
rithm, minimizing the cycle time, minimizing the total equip-
ment cost, and minimizing the smoothness index. Assigning 
operators and activities to the stations is an important is-
sue for balancing the assembly lines. Therefore, a model for 
maximizing production rate and balancing workloads among 
operators on the assembly line has been created by Purno-
mo and Wee (2014).

Ramezanian and Ezzatpanah (2015) proposed a model for 
worker assignment problem. They assign workers to worksta-
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tions with considered operating costs and their abilities to min-
imize cycle time and all the cost that are related to workers. 
They used Imperialist competitive algorithm (ICA) for tackling 
the problem, and the obtained results are compared with GA.

Many studies have assumed that a task needs a fix num-
ber of operators and machines; however, in real situations, 
for reducing the time of tasks, extra resources can be used. 
For this issue, a simulated annealing (SA) algorithm for solv-
ing a U-shaped assembly line balancing with resource de-
pendent task times was presented by Jayaswal and Agarwal 
(2014). The best research on resource dependent u-shaped 
assembly line balancing (RDULB), which assigns tasks to 
workstations and minimizes total cost simultaneously, was 
presented by Yakup Kara (2011).

Reducing the setup times to zero is one of the main issues 
in lean manufacturing systems and makes to order environ-
ment. Zero setup time means there is no justification for 
the use of large stacks and it is better to choose producing 
batches one by one. Also, one of the important causes for 
reduction in efficiency is the setup time. Thus, considering 
an optimum sequencing for the tasks is necessary. Scholl et 
al. (2013) proposed a heuristic algorithm for minimizing the 
number of workstations with consideration of sequence-de-
pendent setup time for a single model assembly line bal-
ancing problem. Moreover, Nazarian (2010) and Kara (2007) 
considered set up time in their studies for mixed model as-
sembly lines and showed the impact of sequence dependent 
setup times to obtain the best sequence of tasks.

Repeating an activity over the time increases the speed of 
operators and, considering the learning effect in ALBP, it cre-
ates conditions with dynamic task times. Biskup (1992) was 
the first author that analyzed learning effect in single-ma-
chine scheduling problems and the objective functions are 
minimize the deviation from a common due date and the 
sum of flowtimes. Toksari, İşleyen (2008) and Nima Hamta 
(2013) used a heuristic algorithm and they utilized Biskup’s 
approach for considering learning effect into single model 
assembly line balancing problems. Zhao et al. (2015) pro-
posed a GA that considers mental workload in mixed-mod-
el assembly line to maximize the production efficiency in 
straight line and the Weibull distribution was used to de-
scribe the relationship between working performance and 
mental workload.

Manavizadeh et al. (2013) presented a model for reduc-
ing the number of stations and maximizing the weighted 
efficiency in U-shaped and mixed-model assembly line bal-
ancing problem using SA. Özcan et al. (2011) developed a 
GA to solve the mixed-model U-line balancing and sequenc-
ing problem when considering stochastic task times. Table 
1 summarizes some relevant studies in the literature and 
highlights gaps between studies.

The present work proposes a new mathematical model 
to minimize the cycle time and the total operating cost relat-
ed to resource dependent task times and smoothness index 
with considering simultaneously flexible operation times, se-
quence-dependent setup times and learning effect in assem-
ble-to-order environment for two parallel lines, in which the 
first one is a common line and the other, due to more mod-
ern technology or operators with higher skills, is an express 
line. Therefore, the cost of equipment and skilled labor in the 
express line is higher and, as a result, the price and product 
quality is higher than the common line. However, in order to 
respond more quickly to customers’ requirements, as well as 
to have better control over costs and selling price, it is allowed 
to consider these two lines together and in parallel shape.

3. PROBLEM DESCRIPTION 

In this paper, a multi-objective model for solving the 
MMALB problem is proposed when considering express par-
allel line, resource dependent task times, flexible operation 
times, sequence-dependent setup times and learning effect 
in assemble-to-order environment. In order to describe the 
problem, the basic assumptions must be introduced. More-
over, a schematic figure of the proposed problem is shown 
in Figure 1. 

Assumption
• The models are homogeneous and all parts of the mod-

els are prepared for utilization in the assembly line.
• Some kinds of customers are interested to pay a 

higher cost for reducing delivery time and this higher 
payment allows the manufacturer to consider par-
ticular condition in this manufacturing opportunity.

• It is considered an express parallel line with higher 
performance operator and higher speed (and quali-
ty) that is equipped by high-level machinery beside 
the common (main) assembly line. Thus, the lead 
time of express line is reduced.

• The workers are trained to perform any operation in 
each line. Moreover, some tasks can be processed 
with additional resources (equipment or assistant).

• We have lower bound  and upper bound  of 
each operation task time.

• Task durations depend on the type of resource 
(equipment type or assistant) used and using addi-
tional resources decreases the task duration. 

• GALBP is studied using the learning curve described 
by Biskup (1999), in which the learning effect is con-
sidered on the operation time of task i assigned to 
position r by the following formulation: 

• where α (=  ≤ 0) is the learning effect 
and s denotes the learning rate.

• The setup times are known and deterministic.
• Regular operators and assistants can move between 

crossover workstations.
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Figure 1. Distribution of entering materials
Source: The author(s)’ own
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The sufficient number of regular operators is available to 
operate the workstations, but other resources (equipment 
and assistants) are limited.

Mathematical model

The multi-objective GALBP, considering express paral-
lel line, resource dependent task times, flexible operation 
times and learning effect in assemble-to-order environment, 
can be formulated as the following mixed integer nonlinear 
programming model. Furthermore, in Figure 1 the distribu-
tion of materials that enter to the lines is described.

Notation Definition
Indices

i task index; i  =1, 2, …, n
k workstation index; k =1, 2, …, m
j model index; j =1, 2, …, p
r sequence position index inside a workstation
l line index (L=2)

parameters

E set of all equipment types

set of equipment types that can be used to 
process task i

NE number of equipment types; NE = |E|

number of equipment of type e available

NA number of assistants available
T subset of tasks that is common for all models
M a big number

probability of entering to line l

subset of immediate predecessors of task i

maximum number of tasks that can be as-
signed to any workstation

standard operation time of task i

lower bound of operation time of task i

upper bound of operation time of task i

time of workstation k

α learning effect

stochastic cycle time of line l

upper bound of cycle time in line l

setup time when task h is operated after task i 
inside the same workstation

subset of all tasks of model j that could be 
assigned to station k on line l

number of all tasks of model j that could be 
assigned to station k on line l

TC total cost per piece in $/unit time

Cw
utilization cost of a workstation (regular opera-
tor + amortized investment costs) per piece in 

$/unit time

Ca employment cost of an assistant per piece in $/
unit time

operating cost of equipment e in line l per 
piece in $/unit time

duration of task i of model j on line l with a 
learning effect if assigned to position r on 

equipment e without an assistant 
duration of task i of model j on line l with a 
learning effect if assigned to position r on 

equipment e with an assistant

Decision variables

1, if task i is processed at workstation j using 
equipment e without an assistant; 0, otherwise

1, if task i is processed at workstation j using 
equipment e and with the help of an assistant; 

0, otherwise
1, if an assistant is assigned to workstation k; 0, 

otherwise
1 if task i is assigned to r th sequence at work-

station k
1 if task i is operated immediately before task h 
(i, h) at workstation k and line l in the same or 

in the next cycle
1 if station k is utilized for model j on line l; 

otherwise 0

1 if station k is utilized by all models on line l
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Mathematical formulation

TC= (1)

The concept of total cost (TC) is utilized for reducing number of variables in the second objective.

Min (2)

Min 
(3)

Min 
(4)

Subject to:

  i, j, l (5)

  k, j, l (6)

  k, r, j, l (7)

  
k, r=1,2,…,  -1 (8)

 
k, l, j (9)

  
k, l, j (10)

  
i, r, j, e;   (11)

  
i, r, j, e;  (12)

 k, l, j (13)

P. k, l (14)

M(1- - ≥0      
j, k, l, r (15)

  
k (16)

 (17)

 
i (18)

 
i (19)

(20)
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Equations (2)-(4) are the objective functions. While ob-
jective function (2) minimizes the average of cycle time for 
two lines, equation (3) minimizes the total cost and relation 
(4) minimizes the smoothness index. Constraints (5) implies 
that each task of each model can be assigned in only one 
sequence position in only one workstation in each line. Con-
straints (6) and (7) ensure that each workstation is assigned 
by, at least, one task and each sequence position inside each 
workstation will have at most one assigned task. Constraints 
(8) state that, for assigning tasks in sequencing each work-
station, the ascending order of positions should be noticed. 
(9) is the cycle time constraints that states that the sum of 
operation times when considering learning effect and set-
up times in each workstation should not exceed the Upper 
bound cycle time of line l. Constraint (10) computes the time 
of workstation k. Constraints (11) and (12) determine the 
operation time of task i when considering the effect of learn-
ing if task i assigned to position r, where α is a learning index.

Constraints (13) and (14) guarantee the utilization of all 
the stations for all models and, if a station is not utilized for 
one model, it should not be used for other models. These 
constraints are presented by Gökċen and Erel (1998). Con-
straints (15) are used to assign common tasks of models to 
the same station on each line. Constraints (16) state that 
an assistant cannot operate a task at a workstation unless 
one is assigned to that workstation. Constraints (17) are the 
assistant availability constraints. Constraints (18) guarantee 
that operation times must be between given lower and up-
per bounds. Constraints (19) denote the state of the lower 
bounds of operation times. Constraint (20) considers binary 
variables. 

4. METHODOLOGY 

Two solution algorithms have been applied to detect ra-
tional Pareto solutions. This section examines the details of 
these two proposed methods for solving a mathematical 
model. The first method is non-dominated sorting genetic 
algorithm (NSGA-II) and another is multi-objective particle 
swarm optimization algorithm (MOPSO). These two meth-
ods have been used in many studies and they are well-
known as an efficient method among researchers (Ghodrat-
nama et al., 2015).

4.1. Chromosome representation

In this study, for resolving the problem, the number of 
components in each chromosome is equal to a given num-
ber of models and assembly lines. It should be noted that 
each chromosome associates with one solution in solutions 
space. Each component has two rows and the length of 
matrix is defined by the number of tasks. The first row rep-
resents the assignment of tasks to station and the second 
row shows the priority of tasks. A sample matrix for the first 
model, first line, and five tasks are shown in Figure 2. In this 
problem, if we have J model then we should have 2J matri-
ces in each solution because of the existence of two parallel 
lines and each matrix consists of two rows. For example, this 
matrix states that the tasks number 1 and 2 are done by first 
and second stations, respectively, and task 3, 4 and 5 are 
done by the third station, respectively.

4.2. NSGA-II algorithm

Srinivas & Deb (1994) proposed NSGA-II for solving 
multi-objective problem for the first time. The main differ-
ence between the algorithm of this method and GA is the 
way of selecting the members of a new population. NSGA-II 
uses the fast-non-dominated sorting approach to rank the 
whole population and, when it is not possible to compare 
ranks, it uses a crowding distance for comparing and select-
ing the population fronts. In the following subsections, the 
steps of NSGA-II algorithm are presented in detail. 

4.2.1. Generating the initial population

Generating the initial population ( ) in size of N is the 
first step of this algorithm and all individuals of  employed 
non-dominated sorting and crowding distance procedure for 
ranking the members of the population.

In this study, the assignment of stations to the tasks for 
each line and each model can be specified by the following 
construction algorithm to initialize the population. The steps 
of construction algorithm to generate the initial population 
are as follows:

• Step 1: Assign station 1 to the task 1.

Figure 2. Chromosome representation
Source: The author(s)’ own
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• Step 2: Input the immediate follower of assigned 
tasks to command list.

• Step 3: Assign station 1 to the task with more prior-
ity and check the Ei and Li constraints for feasibility. 
If these constraints are not feasible, assign the next 
priority.

• Step 4: Control the time of the stations that is not 
exceeded by the task duration time that is assigned 
in them. If it is exceeded, open the new station and 
go back to step 2 else; if it is less, go back to step 
2 and, according to the task times and their prece-
dence relations, if possible, assign the other task in 
the same station.

• Step 5. Make iteration to assign all tasks to stations.

4.2.2. Rank calculation for solutions

When none of objective functions dominate each other 
and we could not choose the best solution, the non-dom-
inated is ranked between the solutions done and is com-
pared to any rate in one of the objective functions that is 
better than the others. According to Deb et al. (2002), the 
non-dominated sorting algorithm is described in Figure 3.

For each p P
= {}, =0   

         If p dominate q  

               add q in  
             Else 

                add 1 in 
Assign all members of population that have  in the first 
pareto-front
* For i=1: k

    While 
    Q= 0  

       For each p 

            For each q 
                 

                      If   
                       add q to Q= {}
                            If Q=  
                       End
                            Else if Q≠  

  Q=
i=i+1 and go to step*

Figure 3. Non-dominated sorting algorithm 
Source: The author(s)’ own

4.2.3. Crowding distance

According to Deb et al. (2002), an important attribute of 
NSGA-II that differs this algorithm from others is crowding 
distance. It determines the relation of individuals with their 
neighbor in terms of their distance from each other. The 
summaries of finding crowding distance are as follow:  is 
an objective function and  is distance.

 
(23)

 
(24)

4.2.4. Parent selection

Binary-tournament selection is applied to select parents. 
First, two random solutions from the population should be 
specified. If they have different rank, the solution with lower 
rank will be chosen; or else, the solution with higher crowd-
ing distance will be selected.

4.2.5. Crossover

After selecting parents, the crossover operator is used 
to create two offsprings by combining the two parents and 
then these two children are added to the offspring popula-
tion. This operator firstly produces an integer random num-
ber between one and the length of chromosomes. Then the 
right part of chromosomes of the first parent is transferred 
to the right side of the chromosomes of the second parent 
or the left side of the chromosome of the second parent is 
transferred to the left side of the chromosome of the first 
parent. The crossover operator is shown in Figure 4.

 Parent1  Parent2  Child1  Child2 
                        
                        

(:,:,1,
1) 

1 2 3 3 3  1 1 2 3 3  1 2 2 3 3  1 1 3 3 3 

 1 1 1 2 3  1 2 1 1 2  1 1 1 1 2  1 2 1 2 3 
                        
                        

(:,:,2,
1) 

1 2 2 3 3  1 2 3 3 3  1 2 3 3 3  1 2 2 3 3 

 1 1 2 1 2  1 1 1 2 3  1 1 1 2 3  1 1 2 1 2 
                        
                        

(:,:,1,
2) 

1 1 2 3 3  1 2 2 3 3  1 1 2 3 3  1 2 2 3 3 

 1 2 1 1 2  1 1 2 1 2  1 2 2 1 2  1 1 1 1 2 
                        
                        

(:,:,2,
2) 

1 2 3 3 3  1 2 2 3 3  1 2 2 3 3  1 2 3 3 3 

 1 1 1 2 3  1 1 2 1 2  1 1 2 1 2  1 1 1 2 3 
                        

Figure 4. Crossover procedure
Source: The author(s)’ own
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4.2.6. Mutation

Another operator is the mutation operator, which gener-
ates another possible solution. As it is shown in Figure 5, in 
this algorithm, after developing a new individual, each gene 
with the mutation probability will be transformed. When 
the mutation occurs, maybe a gene is removed from the 
set of genes or it may be the gene that has ever existed in 
the population added to this set. The mutation of a gene 
means that the gene changes and, depending on the type of 
coding, mutations are used in different ways. In this study, 
for each model (j) and line (l) in each chromosome matrix 
whose probability is lower than , two random numbers are 
generated for task (i) and swapping them with each other.

At last, after generating the children by crossover and 
mutation, it is necessary to control the feasibility of con-
straints for each chromosome (as earlier or latest time of 

station constrains or precedence constrains of tasks) and 
repair them.

 Before mutation  After mutation 
            
            

p(:,:,1,1)<=!  1 2 3 3 3  1 3 3 2 3 
 1 1 1 2 3  1 2 1 1 3 
            
            

p(:,:,2,1)>"!  1 2 2 3 3  1 2 2 3 3 
 1 1 2 1 2  1 1 2 1 2 
            
            

p(:,:,1,2)>"!  1 1 2 3 3  1 1 2 3 3 
 1 2 1 1 2  1 2 1 1 2 
            
            

p(:,:,2,2)<=  1 2 3 3 3  1 2 3 3 3 

Figure 5. Mutation procedure 
Source: The author(s)’ own

4.2.7. Generating New population

By combining the population and children , a combined 
population, ( ), in size 2N will be generated (i.e., ( ) = {( )  
( )}).

The procedure is continued with a non-dominated sort-
ing of combined population to obtain the Pareto fronts and 
estimation of crowded distance of solutions in each front. 
The next parent population (( ) +1), in size N, is formed by 
selecting the best individuals, according to their rank and 
crowded distance. The algorithm is terminated after per-
forming a constant number of generations. The algorithm of 
NSGA-II is described in Figure 6.

4.3. Multi-objective particle swarm optimization

Particle swarm optimization is one of the newest evo-
lutionary optimization techniques that was developed by 
Eberhart and Kennedy (1995) for the first time. The basic 
idea of PSO derived from the social behavior of a group of 
birds. Since the use of this algorithm requires only a series 
of elementary arithmetic operators, the implementation of 
this algorithm is simple and economical in terms of costs. 

Multi-objective particle swarm optimization algorithm 
(MOPSO) was introduced by Coello et al. (2004). It is an ex-
tension of PSO algorithm and it is used for solving multi-ob-
jective problems. Because of the existence of multi objective 
in MOPSO, a concept called archive or repository is added in 
MOPSO compared to PSO, whose  member of the repository 

start

Generate the initial population 
of size N (Pt)

Use Non-Dominated Sorting and Crowding 
distance to classify population (Pt)

Employ Binary Tournament selection to 
select parents and  generate the offspring 
by applying crossover and mutation (Qt) 

Combine both population Pt and Qt to 
create new population Pt+1 in size 2N

Calculate the value of 
objective functions

Dose population 
need to be sort?

Yes

No

Iteration=1

Is maximum 
iteration  
reached?

Iteration+1

No

Yes

end

Select population of 
size N 

Figure 6. Flowchart of NSGA-II algorithm
Source: The author(s)’ own
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Start

Generate the initial population 
with random velocity and 

position 

Separate non-dominated 
particles of the population and 

save them  in a repository

Convert the search space that is 
explored by particles so far to a 

grid

Each particle applying roulette-wheel 
selection approach to choose  a leader 

from members of repository

Use equation 23 and 24 to 
compute new velocity and new 

position of each particle

Perform mutation 
in the swarms

Add new non-dominated particles to repository and 
remove the dominated members and if the number of 

members of repository exceed from the specified 
capacity, remove the additional members

Update the grid by 
considering new 

population

Update the best memory 
of each particles 

Is maximum 
generation 

riched?

Get out of 
repository

end

Yes 

No 

Figure 7. Flowchart of MOPSO algorithm
Source: The author(s)’ own

represents Pareto Front and its particles are non-dominated. 
The most important and essential step for each particle is 
choosing the best answer from global best (Gbest) answer 
and the best personal recollection. Thus, in MOPSO against 
PSO, there is set of non-dominated particles; therefore, one 
member of repository is chosen as a leader and the new ve-
locity and position of each particle is computed by the em-
ploying equation 25 and 26 that is presented below:

(25)

= +VEL(i+1) (26)

Where w is called inertia weight that is responsible for 
controlling the impact of the past velocity of each particle 
on the current one.  and  are called cognitive and social 
positive parameters, respectively.  is the best mem-
ory of particle i and  is the value of leader member 
in hyper cubes h that has more particles than other hyper 
cubes.

For comparing the best vector of personal recollection, 
use the following syntax:

• If the new position dominates the best memory, 
then the new location is the best memory.

• If the new position is dominated by the best memo-
ry, then do nothing.

• If none of them beat each other, consider one of the 
best positions as leader.

In the following, the algorithm of MOPSO is described in 
Figure 7.

5. EXPERIMENTAL RESULTS

In this section, the proposed NSGA-II and MOPSO are 
compared with each other and the results are analyzed. 
MATLAB R2012a on Intel CORE i5 2.40 GHz personal com-
puter with 4 GB RAM is used for coding the algorithms.
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5.1 Parameters tuning 

For obtaining the tuned value of each parameter of algo-
rithms, the Taguchi design of experiment on MINITAB 17 is 
applied, based on the number of Pareto solution.

For optimizing the proposed algorithm parameters, some 
designed set of experiments prefer the Taguchi method 
(2005) that has considerable effect on improving the qual-
ity of the algorithm. Actually, this method assigns a set of 
experiments with different values of the parameters to min-
imize the effect of some causes that could affect the results 
by producing variation in them.

In the first phase, this method was concerned with the 
identification of the parameters that could affect the results 
and a certain level for each value of the parameter is as-
signed to them. For example, in the NSGA-II algorithm, the 
number of population, maximum number of iteration, cross-
over and mutation parameters and in the MOPSO algorithm, 
the number of population, maximum number of iteration, 
number of repository, cognitive and social positive parame-
ters, and inertia weight might influence the results. 

Figure 8-9 and Table 2 indicate the result of the analysis of 
Taguchi Design and the tuned value of each parameter with 
their different levels for the proposed NSGA-II and MOPSO al-
gorithms. In this study, three levels for each parameter are con-
sidered and, for each level, five numbers of experiments are 
performed. The current set of experiments is used to test 25 ex-
periments containing three levels and five different parameters.

5.2 Test problems

Two section including small and large problems are con-
sidered to implement the experimental results. In this paper 
a set of eight MMALBP instances, including five small sized 
and three large sized problems, are considered to calculate 
the objectives by using the NSGA-II and MOPSO algorithms. 
In this section, the forth example from small instances and 
the second example from large size instances are explained. 
The information of these two problems involving prece-
dence diagrams, task dependent setup times, cost of equip-
ment in each line, cost of workstation and assistant, and the 
probability of entering to each line are in appendix, and the 
information about their task times and other instances are 
available in https://goo.gl/Yu1nIE.

The information of parameters that is used in examples 1 
and 2 is shown in Table 3 and the Pareto result of two algo-
rithms for both examples are shown in Table 4-5 and Table 
7-8. Moreover, in Figure 10-13 the Pareto front of NSGA-II 
and MOPSO for both examples are shown. The reply of solu-
tions 15 and 18 of NSGA-II for both examples are shown in 
Table 6 and Table 9, respectively. For example, the result in 
Table 6 indicates that, in line 1 and station 1 for task 1, one 
assistant should be assigned for model 1.

5.3 Comparison metrics

It is necessary to evaluate the quality of the generated 
Pareto fronts’ solutions for comparing two algorithms. There 
are different measures for comparing different algorithms. 
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In this paper, four popular performances’ metrics, including 
number of Pareto, diversity, spacing, and mean ideal dis-
tance (MID) is considered to indicate the efficient algorithm 
between NSGA-II and MOPSO for this problem. In the fol-
lowing, these four measures are explained:

Number of Pareto front: by using this measure we could 
recognize the ability of algorithms to discover an efficient 
solution.

Diversity: it indicates the extension of non-dominated 
solutions and it computes as follow: 

                                  (27) 

Where  are the non-dominated solutions, 
 is the Euclidean distance between them, 

and n is the number of non-dominated solutions (Knowles 
and Corne, 2002).

• Spacing: this metric measures the distribution of the 
Pareto front solutions by computing the distance 
variance of the neighboring solution in the Pareto 
front.

 
(28)

     i, j =1, 2, …, n (29)

Where m is the number of objectives, n is the number of 
non-dominated solutions, and  is the mean value of all . 
The less SM for each Pareto front solution means the more 
efficient solution.

• mean ideal distance: this metric indicates the sum 
of the distance of solutions from the ideal point of 
Pareto that computed as follows:

 

 
(30)

Where  is the maximum value of the objective func-
tion, and  are the ideal points. Smaller MID 
value is more preferred.

Table10 summarizes the result of each measure for five 
small and three large size instances. According to this table, 
generally, the performance of MOPSO, such as more num-
ber of Pareto solution and diversity, is better in comparison 
with NSGA-II. The value for mean ideal distance and spacing 
in most instances in MOPSO is smaller than NSGA-II. 

6. CONCLUSION

In order to respond quickly to customer demands by con-
sidering affordable prices and their satisfaction, production 
and assembly systems need to have a schedule and a plan 
for balancing the lines. Thus, they can reduce costs and in-
crease quality and efficiency, and also, by the effective cost, 
they can respond to all requests. In this study, the NSGA II 
and MOPSO algorithms were applied to solve a mathemat-
ical model of balancing mixed-model assembly lines when 
considering an express parallel line to respond the orders 
quickly and the learning effect on resource dependent task 
times and setup times in assemble-to-order environment. 
The aim of this study was to minimize the cycle time, the 
total operating cost, and the smoothness index simultane-
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Figure 10. The Pareto front of NSGA-II for example 1
Source: The author(s)’ own

Figure 11. The Pareto front of MOPSO for example 1
Source: The author(s)’ own

Figure 12. The Pareto front of NSGA-II for example 2
Source: The author(s)’ own
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ously, by configuring tasks in stations, according to their pre-
cedence diagrams and also to assign the assistants to some 
tasks in some stations and for some models that optimize 
the objectives. The costs that are considered in this objec-
tive are costs of equipment on each line, cost of workstation, 
and cost of assigning an assistant to tasks. Therefore, it is 
rational to assign an assistant to some tasks to accelerate 
the implementation operations and minimize the cycle time.

For recognizing the efficiency of NSGA-II and MOPSO, 
eight numerical examples in small and large size problems 
were applied and the result is indicated in the Pareto solu-
tion of two examples in the context. Finally, we concluded 
that gaining the best position of tasks for each model, con-
sidering minimizing these three objectives, is possible as 
well as the result of comparing these two algorithms repre-
sent the highest number of Pareto front solution and diver-
sity in MOPSO, compared with NSGA-II in all instances and 
better performance of MOPSO according to the spacing and 
MID metrics in the majority of instances.

The result of such studies could help the managers to in-
crease their customers and the speed of response of their 
variable demand and minimize the total cost of systems si-
multaneously. For future research, using this constraint in 
parallel with the U-shaped assembly line or other configura-
tion of lines, also considering uncertainty in task times and 
equipment reliability, could be effective.  
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Figure 15. precedence diagram of example 2


